DFT + U investigation of charged point defects and clusters in UO2.

We present a physically justified formalism for the calculation of point defects and cluster formation energies in UO2. The accessible ranges of chemical potentials of the two components U and O are calculated using the U-O experimental phase diagram and a constraint on the formation energies of vacancies. We then apply this formalism to the DFT + U investigation of the point defects and cluster defects in this material (including charged ones). The most stable charge states obtained for these defects near stoichiometry are consistent with a strongly ionic system. Calculations predict similarly low formation energies for V(U)(4)(-) and I(O)(2)(-) in hyperstoichiometric UO2. In stoichiometric UO2, V(O)(2)(+) and I(o)(@)(-) have the same formation energy in the middle of the gap and in hypostoichiometric UO2, V[Formula: see text] is the most stable defect.

[1]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[2]  Michael T. Hutchings,et al.  Observation of Oxygen Frenkel Disorder in Uranium Dioxide above 2000 K by Use of Neutron-Scattering Techniques , 1984 .

[3]  M Leslie,et al.  The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method , 1985 .

[4]  A. M. Stoneham,et al.  The dielectric constant of UO2 below the Ne´el point , 1987 .

[5]  Hansjoachim Matzke,et al.  Atomic transport properties in UO2 and mixed oxides (U, Pu)O2 , 1987 .

[6]  C. Catlow,et al.  Oxygen diffusion in UO2, ThO2 and PuO2. A review , 1987 .

[7]  Akio Kotani,et al.  Systematic Analysis of Core Photoemission Spectra for Actinide Di-Oxides and Rare-Earth Sesqui-Oxides , 1992 .

[8]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[9]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[10]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[11]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[12]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[13]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[14]  Adrian P. Sutton,et al.  Effect of Mott-Hubbard correlations on the electronic structure and structural stability of uranium dioxide , 1997 .

[15]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[16]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[17]  K. Ikushima,et al.  First-order phase transition in UO 2 : 235 U and 17 O NMR study , 2001 .

[18]  Christine Guéneau,et al.  Thermodynamic assessment of the uranium–oxygen system , 2002 .

[19]  J. Boettger Predicted spin-orbit coupling effect on the magnetic ordering of crystalline uranium dioxide , 2003 .

[20]  K. Schwarz,et al.  Magnetic structure and electric-field gradients of uranium dioxide: An ab initio study , 2004 .

[21]  T. L. Bihan,et al.  Behaviour of Actinide Dioxides under Pressure: UO2 and ThO2 , 2004 .

[22]  Michel Freyss,et al.  Point defects in uranium dioxide: Ab initio pseudopotential approach in the generalized gradient approximation , 2005 .

[23]  Shengbai Zhang,et al.  First-principles study of native defects in anatase Ti O 2 , 2006 .

[24]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[25]  Yasunori Kaneta,et al.  First-Principles Calculation of Point Defects in Uranium Dioxide , 2006 .

[26]  F. Jollet,et al.  γandβcerium:LDA+Ucalculations of ground-state parameters , 2008 .

[27]  Bernard Amadon,et al.  Structural, thermodynamic, and electronic properties of plutonium oxides from first principles , 2008 .

[28]  Bernard Amadon,et al.  DFT+U calculations of the ground state and metastable states of uranium dioxide , 2009 .

[29]  James S. Tulenko,et al.  Energetics of intrinsic point defects in uranium dioxide from electronic-structure calculations , 2009 .

[30]  Alex Zunger,et al.  Accurate prediction of defect properties in density functional supercell calculations , 2009 .

[31]  Vincenzo V. Rondinella,et al.  Impact of Auto-irradiation on the Thermophysical Properties of Oxide Nuclear Reactor Fuels , 2010 .

[32]  D. Sedmidubský,et al.  Density functional theory calculations on magnetic properties of actinide compounds. , 2010, Physical chemistry chemical physics : PCCP.

[33]  Boris Dorado,et al.  Stability of oxygen point defects in UO 2 by first-principles DFT + U calculations: Occupation matrix control and Jahn-Teller distortion , 2010 .

[34]  Blas P. Uberuaga,et al.  U and Xe transport in UO2±x: Density functional theory calculations , 2011 .

[35]  Fabien Bruneval,et al.  Understanding and correcting the spurious interactions in charged supercells , 2011 .

[36]  J. Crocombette,et al.  Charge states of point defects in uranium oxide calculated with a local hybrid functional for correlated electrons , 2011 .

[37]  J. Crocombette,et al.  Influence of charge states on energies of point defects and clusters in uranium dioxide , 2012 .

[38]  B. Uberuaga,et al.  Solubility and clustering of ruthenium fission products in uranium dioxide as determined by density functional theory , 2012 .

[39]  Alfredo Pasquarello,et al.  Finite-size supercell correction schemes for charged defect calculations , 2012 .

[40]  Philippe Garcia,et al.  First-principles calculations of uranium diffusion in uranium dioxide , 2012 .

[41]  Marjorie Bertolus,et al.  Electronic structure investigation of energetics and positron lifetimes of fully relaxed monovacancies with various charge states in 3C-SiC and 6H-SiC , 2013 .

[42]  P. Olsson,et al.  He, Kr and Xe diffusion in ZrN – An atomic scale study , 2013 .

[43]  O. Beneš,et al.  The heat capacity of NpO2 at high temperatures: the effect of oxygen Frenkel pair formation , 2013 .

[44]  B. M. Smirnov,et al.  Modeling of configurational transitions in atomic systems , 2013 .

[45]  P. Garcia,et al.  Advances in first-principles modelling of point defects in UO2: f electron correlations and the issue of local energy minima , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[46]  Julia Wiktor,et al.  Calculation of defect formation energies in UO 2 , 2014 .