The K-Version of finite element method for nonlinear operators in bvp

In the companion papers [1,2], authors introduced the concepts of k-version of finite element method and k, hk, pk, hkp-processes of the finite element method for boundary value problems described by self-adjoint and non-self adjoint operators using Ĥk,p(Ω) spaces with specific details including numerical studies for weak forms and least square processes. It was demonstrated that a variationally consistent (VC) weak form is possible when the differential operator is self-adjoint, however, in case of non-self-adjoint operators the weak forms are variationally inconsistent (VIC) which lead to degenerate computational processes that can produce spurious oscillations in the computed solutions. In this paper we demonstrate that when the boundary value problems are described by non-linear differential operators, Galerkin processes and weak forms can never be variationally consistent and hence result in degenerate computational processes and suffer from same problems as in the case of non-self-adjoint operators ...

[1]  B. Jiang,et al.  Least-squares finite element method for fluid dynamics , 1990 .

[2]  Karan S. Surana,et al.  A SPACE-TIME COUPLED P-VERSION LEAST SQUARES FINITE ELEMENT FORMULATION FOR UNSTEADY TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS , 1996 .

[3]  Karan S. Surana,et al.  p‐version least squares finite element formulation for two‐dimensional, incompressible fluid flow , 1994 .

[4]  On quadratic elements in finite element solutions of steady‐state convection—diffusion equation , 1980 .

[5]  Karan S. Surana,et al.  A space–time coupled p‐version least‐squares finite element formulation for unsteady fluid dynamics problems , 1994 .

[6]  Thomas J. R. Hughes,et al.  A simple scheme for developing ‘upwind’ finite elements , 1978 .

[7]  O. C. Zienkiewicz,et al.  Finite element methods for second order differential equations with significant first derivatives , 1976 .

[8]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[9]  K. S. Surana,et al.  The k-Version of Finite Element Method for Self-Adjoint Operators in BVP , 2002, Int. J. Comput. Eng. Sci..

[10]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[11]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .

[12]  Karan S. Surana,et al.  Investigation of diffusion in p-version ‘LSFE’ and ‘STLSFE’ formulations , 1995 .

[13]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[14]  Karan S. Surana,et al.  p-Version least squares finite element formulation for axisymmetric incompressible non-Newtonian fluid flow , 1994 .

[15]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[16]  Karan S. Surana,et al.  p‐version least‐squares finite element formulation for convection‐diffusion problems , 1993 .

[17]  Ching L. Chang,et al.  An error analysis of least-squares finite element method of velocity-pressure-vorticity formulation for Stokes problem , 1990 .

[18]  Karan S. Surana,et al.  Non‐weak/strong solutions in gas dynamics: a C11 p‐version STLSFEF in Lagrangian frame of reference using ρ, u, p primitive variables , 2002 .

[19]  B. C. Bell,et al.  p-version least squares finite element formulation for two-dimensional, incompressible, non-Newtonian isothermal and non-isothermal fluid flow , 1994 .

[20]  B. Rubinsky,et al.  A mixed-variable continuously deforming finite element method for parabolic evolution problems. Part I: The variational formulation for a single evolution equation , 1989 .

[21]  K. S. Surana,et al.  Nonweak/Strong Solutions of Linear and Nonlinear Hyperbolic and Parabolic Equations Resulting from a Single Conservation Law , 2000, Int. J. Comput. Eng. Sci..

[22]  Paul P. Lynn,et al.  Efficient least squares finite elements for two‐dimensional laminar boundary layer analysis , 1976 .

[23]  Karan S. Surana,et al.  p‐version least‐squares finite element formulation of Burgers' equation , 1993 .

[24]  G. Carey,et al.  A stable least‐squares finite element method for non‐linear hyperbolic problems , 1988 .

[25]  O. C. Zienkiewicz,et al.  Quadratic finite element schemes for two-dimensional convective-transport problems , 1977 .

[26]  O. C. Zienkiewicz,et al.  A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems , 1980 .

[27]  B. Rubinsky,et al.  A mixed‐variable continuously deforming finite element method for parabolic evolution problems. Part III: Numerical implementation and computational results , 1989 .

[28]  O. C. Zienkiewicz,et al.  An ‘upwind’ finite element scheme for two‐dimensional convective transport equation , 1977 .

[29]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .