Limiting Carleman weights and anisotropic inverse problems

[1]  Colin Guillarmou,et al.  Inverse problems for Einstein manifolds , 2007, 0710.1136.

[2]  M. Salo,et al.  Carleman estimates and inverse problems for Dirac operators , 2007, 0709.2282.

[3]  M. Salo Recovering first order terms from boundary measurements , 2007 .

[4]  M. Salo,et al.  Determining nonsmooth first order terms from partial boundary measurements , 2006, math/0609133.

[5]  C. Kenig,et al.  Determining a Magnetic Schrödinger Operator from Partial Cauchy Data , 2006, math/0601466.

[6]  Hiroshi Isozaki,et al.  Inverse spectral problems on hyperbolic manifolds and their applications to inverse boundary value problems in Euclidean space , 2004 .

[7]  C. Kenig,et al.  The Calderón problem with partial data , 2004, math/0405486.

[8]  M. Lassas,et al.  Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane , 2004, math/0401410.

[9]  Gunther Uhlmann,et al.  Anisotropic inverse problems in two dimensions , 2003 .

[10]  Matti Lassas,et al.  On determining a Riemannian manifold from the Dirichlet-to-Neumann map , 2001 .

[11]  William R B Lionheart,et al.  Conformal uniqueness results in anisotropic electrical impedance imaging , 1997 .

[12]  G. Uhlmann,et al.  Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field , 1995 .

[13]  Vladimir A. Sharafutdinov,et al.  On Emission Tomography of Inhomogeneous Media , 1995, SIAM J. Appl. Math..

[14]  V. Sharafutdinov Integral Geometry of Tensor Fields , 1994 .

[15]  Gunther Uhlmann,et al.  Generic uniqueness for an inverse boundary value problem , 1991 .

[16]  John Sylvester,et al.  An anisotropic inverse boundary value problem , 1990 .

[17]  John M. Lee,et al.  Determining anisotropic real-analytic conductivities by boundary measurements , 1989 .

[18]  J. Sylvester,et al.  Inverse boundary value problems at the boundary—continuous dependence , 1988 .

[19]  Robert V. Kohn,et al.  IDENTIFICATION OF AN UNKNOWN CONDUCTIVITY BY MEANS OF MEASUREMENTS AT THE BOUNDARY. , 1983 .

[20]  M. M. Lavrentʹev,et al.  Multidimensional Inverse Problems for Differential Equations , 1970 .

[21]  A. Bukhgeǐm,et al.  Recovering a potential from Cauchy data in the two-dimensional case , 2008 .

[22]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[23]  Sun Wei-ling,et al.  Progress on Electrical Impedance Tomography , 2007 .

[24]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[25]  Matti Lassas,et al.  The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary , 2003 .

[26]  M. Dimassi,et al.  Spectral Asymptotics in the Semi-Classical Limit: Frontmatter , 1999 .

[27]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[28]  G. Lebeau,et al.  Stabilisation de l’équation des ondes par le bord , 1997 .

[29]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[30]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[31]  G. Lebeau,et al.  Contróle Exact De Léquation De La Chaleur , 1995 .

[32]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[33]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[34]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators IV , 1985 .

[35]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[36]  Kim Knudsen,et al.  Determining nonsmooth first order terms from partial boundary measurements , 2022 .