On the conjectural decomposition of symmetric powers of automorphic representations for GL(3) and GL(4)

Given a cuspidal automorphic representation π for GL(3) over a number field and a positive integer k, assume that the symmetric mth power lifts of π are isobaric automorphic for m ≤ k, cuspidal for m ≤ k− 1, and that certain associated Rankin–Selberg products are isobaric automorphic. Then the number of cuspidal isobaric summands in the kth symmetric power lift is bounded above by 3 when k ≥ 7, and bounded above by 2 when k ≥ 19 with k ≡ 1 (mod 3). We then investigate the analogous problem for GL(4).

[1]  M. Kisin Modularity of 2-adic Barsotti-Tate representations , 2009 .

[2]  G. Henniart Sur la fonctorialité, pour GL(4), donnée par le carré extérieur , 2009 .

[3]  HighWire Press Philosophical transactions of the Royal Society of London. Series A, Containing papers of a mathematical or physical character , 1896 .

[4]  PENG-JIE Wong Applications of group theory to conjectures of Artin and Langlands , 2017 .

[5]  PENG-JIE Wong Langlands reciprocity for certain Galois extensions , 2017 .

[6]  Henry H. Kim,et al.  Functorial products for GL 2 × GL 3 and functorial symmetric cube for GL 2 , 2000 .

[7]  Kimball Martin Four-dimensional Galois representations of solvable type and automorphic forms , 2004 .

[8]  M. Asgari,et al.  A Cuspidality Criterion for the Exterior Square Transfer of Cusp Forms on GL(4) , 2007, 0712.4315.

[9]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[10]  A SYMPLECTIC CASE OF ARTIN'S CONJECTURE , 2003, math/0301093.

[11]  R. Langlands,et al.  PROBLEMS IN THE THEORY OF AUTOMORPHIC FORMS , 2014 .

[12]  Kimball Martin,et al.  Distinguishing finite group characters and refined local-global phenomena , 2016, 1607.07586.

[13]  S. Gelbart,et al.  A relation between automorphic representations of GL(2) and GL(3) , 2003 .

[14]  Chandrashekhar Khare,et al.  Serre's Modularity Conjecture , 2011 .

[15]  D. Foata,et al.  Combinatoire et représentation du groupe symétrique : actes de la Table ronde du C.N.R.S., tenue à l'Université Louis Pasteur de Strasbourg, 26 au 30 avril 1976 , 1977 .

[16]  D. Ramakrishnan Remarks on the Symmetric Powers of Cusp Forms on GL(2) , 2007, 0710.0676.

[17]  Henry H. Kim,et al.  FUNCTORIALITY FOR THE EXTERIOR SQUARE OF GL4 AND THE SYMMETRIC FOURTH OF GL2 , 2003 .

[18]  Correction: "Modularity of the Rankin-Selberg $L$-series, and multiplicity one for SL(2)" , 2000, math/0007203.

[19]  Jerrold Tunnell,et al.  Artin’s conjecture for representations of octahedral type , 1981 .

[20]  Shu Sasaki Integral models of Hilbert modular varieties in the ramified case, deformations of modular Galois representations, and weight one forms , 2018, Inventiones mathematicae.

[21]  J. Arthur,et al.  Simple algebras, base change, and the advanced theory of the trace formula , 1989 .

[22]  Henry H. Kim,et al.  Functorial products for GL2×GL3 and functorial symmetric cube for GL2 , 2000 .

[23]  Robert P. Langlands,et al.  BASE CHANGE FOR GL(2) , 1980 .

[24]  Henry H. Kim,et al.  Cuspidality of symmetric powers with applications , 2002 .