Lab-on-a-chip devices for cell biology studies

Microtechnology offers the attractive possibility of modulating the microenvironment of single cells and, for the same price, obtain data at high throughput for a small cost. Microfluidic or "Lab on a Chip" devices, in particular, promise to play a key role for several reasons: 1) the dimensions of microchannels can be comparable to or smaller than a single cell; 2) the unique physicochemical behavior of liquids confined to microenvironments enables new strategies for delivering compounds to cells on a subcellular level; 3) the devices consume small quantities of precious/hazardous reagents (thus reducing cost of operation/disposal); and 4) the can be mass-produced in low-cost, portable units. Not surprisingly, in recent years there has been an eruption of microfluidic implementations of a variety of traditional bioanalysis techniques. I will review the latest efforts of our laboratory in the development of cell-based microdevices for cell biology studies, such as neuromuscular synaptogenesis, axon guidance, and chemotaxis.