Strong band renormalization and emergent ferromagnetism induced by electron-antiferromagnetic-magnon coupling

[1]  G. Gu,et al.  Disappearance of superconductivity due to vanishing coupling in the overdoped Bi$$_{2}$$Sr$$_{2}$$CaCu$$_{2}$$O$$_{8+\delta }$$ , 2019, Nature Communications.

[2]  G. Bihlmayer,et al.  Kink far below the Fermi level reveals new electron-magnon scattering channel in Fe , 2018, Nature Communications.

[3]  X. Lou,et al.  Unveiling the Superconducting Mechanism of Ba_{0.51}K_{0.49}BiO_{3}. , 2018, Physical review letters.

[4]  H. Berger,et al.  Coherent organization of electronic correlations as a mechanism to enhance and stabilize high-TC cuprate superconductivity , 2018, Nature Communications.

[5]  Yi Liu,et al.  Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2 , 2018, Science Advances.

[6]  F. Giustino,et al.  Origin of the crossover from polarons to Fermi liquids in transition metal oxides , 2017, Nature Communications.

[7]  J. Niedziela,et al.  Robust antiferromagnetic spin waves across the metal-insulator transition in hole-doped BaMn 2 As 2 , 2017, 1702.05082.

[8]  Z. Fang,et al.  Angle-resolved photoemission observation of Mn-pnictide hybridization and negligible band structure renormalization in BaMn2As2 and BaMn2Sb2 , 2016, 1608.06110.

[9]  Jiangping Hu Identifying the genes of unconventional high temperature superconductors , 2015, Science bulletin.

[10]  M. Abdel-Hafiez,et al.  Magnetic ground state of FeSe , 2015, Nature Communications.

[11]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[12]  M. Kitamura,et al.  Isotropic Kink and Quasiparticle Excitations in the Three-Dimensional Perovskite Manganite La_{0.6}Sr_{0.4}MnO_{3}. , 2015, Physical review letters.

[13]  R. Rosenberg,et al.  Itinerant ferromagnetism in the As 4p conduction band of Ba_{0.6}K_{0.4}Mn_{2}As_{2} identified by X-ray magnetic circular dichroism. , 2015, Physical review letters.

[14]  B. Lake,et al.  Linear spin wave theory for single-Q incommensurate magnetic structures , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  I. Mazin,et al.  First-principles evidence of Mn moment canting in hole-doped Ba1-2xK2xMn2As2 , 2013, 1311.1537.

[16]  D. Johnston,et al.  Coexistence of half-metallic itinerant ferromagnetism with local-moment antiferromagnetism in Ba0.60K0.40Mn2As2. , 2013, Physical review letters.

[17]  T. Oguchi,et al.  High-resolution angle-resolved photoemission study of electronic structure and electron self-energy in palladium , 2013 .

[18]  Zhu-An Xu,et al.  Weakly ferromagnetic metallic state in heavily doped Ba1−xKxMn2As2 , 2012, 1201.1399.

[19]  Y. Lee,et al.  Ba(1-x)K(x)Mn2As2: an antiferromagnetic local-moment metal. , 2011, Physical Review Letters.

[20]  Yan Huang,et al.  Observation of ordered vortices with Andreev bound states in Ba 0.6 K 0.4 Fe 2 As 2 , 2011 .

[21]  X. H. Chen,et al.  Out-of-plane momentum and symmetry-dependent energy gap of the pnictide Ba0.6K0.4Fe2As2 superconductor revealed by angle-resolved photoemission spectroscopy. , 2010, Physical review letters.

[22]  Jiangping Hu,et al.  Spin Waves and Magnetic Exchange Interactions in CaFe2As2 , 2009 .

[23]  P. Hofmann,et al.  Electron–phonon coupling at surfaces and interfaces , 2009 .

[24]  Qingzhen Huang,et al.  Magnetic order in BaMn2 As2 from neutron diffraction measurements , 2009 .

[25]  E. Rotenberg,et al.  Renormalization of bulk magnetic electron states at high binding energies. , 2009, Physical review letters.

[26]  X. H. Chen,et al.  Spin waves and magnetic exchange interactions in CaFe 2 As 2 , 2009, 0903.2686.

[27]  A. Sefat,et al.  Electronic structure and magnetism in BaMn2As2 and BaMn2Sb2 , 2009, 0901.0272.

[28]  W. Hanke,et al.  Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor , 2008, 0812.3860.

[29]  H. S. Ruiz,et al.  Nature of the nodal kink in angle-resolved photoemission spectra of cuprate superconductors , 2008, 0811.3863.

[30]  A. Pasupathy,et al.  Momentum dependence of superconducting gap, strong-coupling dispersion kink, and tightly bound Cooper pairs in the high- Tc (Sr,Ba) 1-x(K,Na)xFe2As2 superconductors , 2008, 0812.2061.

[31]  K. Ishizaka,et al.  Superconducting electronic state in optimally doped YBa2 Cu3 O7-δ observed with laser-excited angle-resolved photoemission spectroscopy , 2008, 0811.0479.

[32]  Marcus Tegel,et al.  Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. , 2008, Physical review letters.

[33]  Y. Aiura,et al.  Angle-resolved photoemission spectroscopy study of Fe(110) single crystal: Many-body interactions between quasi-particles at the Fermi level , 2007 .

[34]  G. Gu,et al.  High-energy kink observed in the electron dispersion of high-temperature cuprate superconductors. , 2007, Physical review letters.

[35]  T. P. Devereaux,et al.  Hierarchy of Multiple Many-Body Interaction Scales in High-Temperature Superconductors , 2006, cond-mat/0612541.

[36]  T. Pruschke,et al.  Kinks in the dispersion of strongly correlated electrons , 2006, cond-mat/0609594.

[37]  Y. Aiura,et al.  High-resolution angle-resolved photoemission study of Fe (1 1 0) , 2006 .

[38]  I. Vobornik,et al.  High-energy scale revival and giant kink in the dispersion of a cuprate superconductor. , 2006, Physical review letters.

[39]  C. Jozwiak,et al.  Universal high energy anomaly in the angle-resolved photoemission spectra of high temperature superconductors: possible evidence of spinon and holon branches. , 2006, Physical review letters.

[40]  H. Eisaki,et al.  Normal-state electronic structure in the heavily overdoped regime of Bi1.74 Pb0.38 Sr1.88 Cu O6+δ single-layer cuprate superconductors : An angle-resolved photoemission study , 2006, cond-mat/0602418.

[41]  M. Knupfer,et al.  Kinks, nodal bilayer splitting, and interband scattering in YBa2Cu3O(6+x). , 2005, Physical review letters.

[42]  Z. Hussain,et al.  Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites , 2005, Nature.

[43]  Y. Tokura,et al.  Quasiparticlelike peaks, kinks, and electron-phonon coupling at the (pi,0) regions in the CMR oxide La2-2x Sr1+2x Mn2 O7. , 2005, Physical review letters.

[44]  N. Nagaosa,et al.  A review of electron–phonon coupling seen in the high‐Tc superconductors by angle‐resolved photoemission studies (ARPES) , 2005 .

[45]  M. Knupfer,et al.  Bare electron dispersion from experiment: Self-consistent self-energy analysis of photoemission data , 2004, cond-mat/0409483.

[46]  A. Fujimori,et al.  Ferromagnetic transition in MnP studied by high-resolution photoemission spectroscopy , 2004 .

[47]  N. Nagaosa,et al.  Anisotropic electron-phonon interaction in the cuprates. , 2004, Physical review letters.

[48]  E. Rotenberg,et al.  Electronic quasiparticle renormalization on the spin wave energy scale. , 2004, Physical review letters.

[49]  M. Knupfer,et al.  Manifestation of the magnetic resonance mode in the nodal quasiparticle lifetime of the superconducting cuprates. , 2004, Physical review letters.

[50]  H. Eisaki,et al.  Superconducting order parameter in heavily overdoped Bi2Sr2CaCu2O8+δ: A global quantitative analysis , 2004, cond-mat/0402247.

[51]  P. Anderson,et al.  TOPICAL REVIEW: The physics behind high-temperature superconducting cuprates: the 'plain vanilla' version of RVB , 2003, cond-mat/0311467.

[52]  H. Matsui,et al.  Observation of band renormalization effects in hole-doped high-Tc Superconductors. , 2003, Physical review letters.

[53]  Peter D. Johnson,et al.  Quasiparticle spectra, charge-density waves, superconductivity, and electron-phonon coupling in 2H-NbSe2. , 2003, Physical review letters.

[54]  Z. Hussain,et al.  Direct extraction of the Eliashberg function for electron-phonon coupling: a case study of Be(10(-)10). , 2003, Physical review letters.

[55]  T. Noda,et al.  High-temperature superconductors: Universal nodal Fermi velocity , 2003, Nature.

[56]  B. Hellsing,et al.  Electron-phonon coupling at metal surfaces , 2002 .

[57]  T. Noda,et al.  Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors , 2001, Nature.

[58]  Y. Endoh,et al.  Para- to ferromagnetic phase transition ofCoS2studied by high-resolution photoemission spectroscopy , 2001 .

[59]  Shen,et al.  Evidence for an energy scale for quasiparticle dispersion in Bi2Sr2CaCu2O8 , 2000, Physical review letters.

[60]  D. Scalapino,et al.  The Cuprate Pairing Mechanism , 1999, Science.

[61]  P. Fazekas,et al.  Lecture notes on electron correlation and magnetism , 1999 .

[62]  Y. Tokura,et al.  k-Dependent Electronic Structure, a Large "Ghost" Fermi Surface, and a Pseudogap in a Layered Magnetoresistive Oxide , 1998 .

[63]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[64]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[65]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[66]  Fisk,et al.  High-energy spin waves in La2CuO4. , 1991, Physical review letters.

[67]  K. Adachi,et al.  Magnetic Properties of Au4V Single Crystal , 1980 .

[68]  H. Capellmann Theory of itinerant ferromagnetism in the 3-d transition metals , 1979 .

[69]  K. Cheng Theory of Superconductivity , 1948, Nature.

[70]  G. Gu,et al.  Disappearance of Superconductivity Due to Vanishing Coupling in the Overdoped Bi2Sr2CaCu2O8+δ , 2019 .

[71]  Zhu-An Xu,et al.  Weakly ferromagnetic metallic state in heavily doped Ba_ {1− x} K_ {x} Mn_ {2} As_ {2} , 2012 .

[72]  H. Katod,et al.  Angle-resolved photoemission spectroscopy study of Fe ( 110 ) single crystal : Many-body interactions between quasiparticles at the Fermi level , 2008 .

[73]  H. Eisaki,et al.  Superconducting order parameter in heavily overdoped Bi 2 Sr 2 CaCu 2 O 8 + δ : a global quantitative analysis , 2008 .

[74]  P. W. Anderson,et al.  The physics behind high-temperature superconducting cuprates: the ‘plain vanilla’ version of RVB , 2004 .

[75]  M. Kastner,et al.  Anomalous Temperature Dependence in the Photoemission Spectral Function of Cuprates , 2002 .

[76]  P. Rennert,et al.  Many‐particle Physics , 1982 .