A unified framework for generalized multicategories
暂无分享,去创建一个
[1] J. Lambek. Deductive systems and categories II. Standard constructions and closed categories , 1969 .
[2] S. Lack,et al. The formal theory of monads II , 2002 .
[3] R. Lowen. Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad , 1997 .
[4] Dominic R. Verity,et al. Enriched Categories, Internal Categories and Change of Base , 2011 .
[5] Ronald Brown,et al. Double groupoids and crossed modules , 1976 .
[6] Marco Grandis,et al. Adjoint for double categories , 2004 .
[7] Ross Street,et al. Fibrations in bicategories , 1980 .
[8] Tom Leinster. Operads in Higher-Dimensional Category Theory , 2000 .
[9] Claudio Hermida. From coherent structures to universal properties , 2000 .
[10] Tom Leinster,et al. Higher Operads, Higher Categories: Opetopes , 2004 .
[11] Homotopy Algebras for Operads , 2000, math/0002180.
[12] ON PROPERTY-LIKE STRUCTURES , 1997 .
[13] Brian Day,et al. Monoidal Bicategories and Hopf Algebroids , 1997 .
[14] G. M. Kelly. Applications of Categories in Computer Science: On clubs and data-type constructors , 1992 .
[15] G. M. Kelly. Many-variable functorial calculus. I. , 1972 .
[16] Mark Weber,et al. Operads within Monoidal Pseudo Algebras , 2004, Appl. Categorical Struct..
[17] Walter Tholen,et al. Ordered Topological Structures , 2009 .
[18] I. Kríz,et al. Operads, algebras, modules and motives , 2018, Astérisque.
[19] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .
[20] The Span Construction , 2010 .
[21] Ieke Moerdijk,et al. Axiomatic homotopy theory for operads , 2002, math/0206094.
[22] Glynn Winskel,et al. The cartesian closed bicategory of generalised species of structures , 2008 .
[23] R. J. Macg,et al. PATHS IN DOUBLE CATEGORIES , 2006 .
[24] F. William Lawvere,et al. Metric spaces, generalized logic, and closed categories , 1973 .
[25] Jeffrey Morton. Categorified algebra and quantum mechanics. , 2006 .
[26] Ross Street,et al. Fibrations and Yoneda's lemma in a 2-category , 1974 .
[27] Stephen Lack,et al. Limits of small functors , 2007 .
[28] Richard Garner. Polycategories via pseudo-distributive laws , 2006, math/0606735.
[29] G. M. Kelly,et al. Structures defined by finite limits in the enriched context, I , 1982 .
[30] Dirk Hofmann,et al. One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..
[31] A. Joyal. Foncteurs analytiques et espèces de structures , 1986 .
[32] J. P. May,et al. The geometry of iterated loop spaces , 1972 .
[33] Marco Grandis,et al. Limits in double categories , 1999 .
[34] Michael Shulman,et al. Framed bicategories and monoidal fibrations , 2007, 0706.1286.
[35] Ross Street,et al. Elementary cosmoi I , 1974 .
[36] Ross Street,et al. Limits indexed by category-valued 2-functors , 1976 .
[37] Law Fw. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .
[38] Gavin J. Seal. CANONICAL AND OP-CANONICAL LAX ALGEBRAS , 2005 .
[39] Walter Tholen,et al. Metric, topology and multicategory—a common approach , 2003 .
[40] Mark Weber,et al. Yoneda Structures from 2-toposes , 2007, Appl. Categorical Struct..
[41] F. W. Lawvere,et al. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[42] G. M. Kelly. An abstract approach to coherence , 1972 .
[43] J. M. Boardman,et al. Homotopy Invariant Algebraic Structures on Topological Spaces , 1973 .
[44] Joachim Lambek,et al. Deductive systems and categories III. Cartesian closed categories, intuitionist propositional calculus, and combinatory logic , 1972 .
[45] Christoph Schubert,et al. Extensions in the theory of lax algebras , 2010 .
[46] James Dolan,et al. Higher-Dimensional Algebra III: n-Categories and the Algebra of Opetopes , 1997 .
[47] Walter Tholen,et al. Lectures on Lax-Algebraic Methods in General Topology Summer School in Categorical Methods in Algebra and Topology , 2007 .
[48] Jon P. May,et al. THE UNIQUENESS OF INFINITE LOOP SPACE MACHINES , 1978 .
[49] Michael Batanin,et al. Monoidal Globular Categories As a Natural Environment for the Theory of Weakn-Categories☆ , 1998 .
[50] Albert Burroni. $T$-catégories (catégories dans un triple) , 1971 .
[51] John Power. Enriched Lawvere Theories , .
[52] Ross Street,et al. ENRICHED CATEGORIES AND COHOMOLOGY , 1983 .
[53] Rings, modules, and algebras in infinite loop space theory , 2004, math/0403403.
[54] James Dolan,et al. From Finite Sets to Feynman Diagrams , 2001 .
[55] A. Joyal. Une théorie combinatoire des séries formelles , 1981 .
[56] Michael Shulman,et al. Comparing composites of left and right derived functors , 2007, 0706.2868.
[57] Tom Leinster,et al. Generalized enrichment of categories , 2002, math/0204279.
[58] Eugenia Cheng. Weak n -categories: opetopic and multitopic foundations , 2003 .
[59] Brian Day,et al. Lax monoids, pseudo-operads, and convolution , 2003 .
[60] J. Benabou. Introduction to bicategories , 1967 .