The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis

[1]  Shifeng Cheng,et al.  An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages , 2020, Nature Plants.

[2]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[3]  J. Moncalvo,et al.  Diversification of the gut fungi (Harpellales) co-occurred with the origin of complete metamorphosis of their symbiotic insect hosts (lower Diptera). , 2019, Molecular phylogenetics and evolution.

[4]  T. Bisseling,et al.  A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. , 2019, The New phytologist.

[5]  T. Kasuga,et al.  Haplotype-Phased Genome Assembly of Virulent Phytophthora ramorum Isolate ND886 Facilitated by Long-Read Sequencing Reveals Effector Polymorphisms and Copy Number Variation. , 2019, Molecular plant-microbe interactions : MPMI.

[6]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v4: recent updates and new developments , 2019, Nucleic Acids Res..

[7]  B. Henrissat,et al.  Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. , 2019, The New phytologist.

[8]  Blondy Canto-Canché,et al.  Fatty Acids, Hydrocarbons and Terpenes of Nannochloropsis and Nannochloris Isolates with Potential for Biofuel Production , 2018, Energies.

[9]  Stéphanie Mathieu,et al.  Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi , 2018, eLife.

[10]  D. Hibbett,et al.  Contemporaneous radiations of fungi and plants linked to symbiosis , 2018, Nature Communications.

[11]  M. Selosse,et al.  The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. , 2018, The New phytologist.

[12]  B. Henrissat,et al.  High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. , 2018, The New phytologist.

[13]  Z. Fei,et al.  Genome and evolution of the arbuscular mycorrhizal fungus Diversispora epigaea (formerly Glomus versiforme) and its bacterial endosymbionts. , 2018, The New phytologist.

[14]  Stéphanie Mathieu,et al.  Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes. , 2018, The New phytologist.

[15]  T. Bisseling,et al.  Host‐ and stage‐dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis , 2018, The Plant journal : for cell and molecular biology.

[16]  S. Rensing Great moments in evolution: the conquest of land by plants. , 2018, Current opinion in plant biology.

[17]  Mark N. Puttick,et al.  The timescale of early land plant evolution , 2018, Proceedings of the National Academy of Sciences.

[18]  Jana Sperschneider,et al.  Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0 , 2018, bioRxiv.

[19]  L. Farinelli,et al.  Ultra-low input transcriptomics reveal the spore functional content and phylogenetic affiliations of poorly studied arbuscular mycorrhizal fungi , 2017, DNA research : an international journal for rapid publication of reports on genes and genomes.

[20]  C. Hamel,et al.  Changes in arbuscular mycorrhizal fungal attributes along a chronosequence of black locust (Robinia pseudoacacia) plantations can be attributed to the plantation-induced variation in soil properties. , 2017, The Science of the total environment.

[21]  D. Reinhardt,et al.  Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter? , 2017, Trends in plant science.

[22]  F. Barbosa,et al.  Effects of nutritional conditions on lipid production by cyanobacteria. , 2017, Anais da Academia Brasileira de Ciencias.

[23]  Han Fang,et al.  GenomeScope: Fast reference-free genome profiling from short reads , 2016, bioRxiv.

[24]  V. Scariot,et al.  Wild Camellia japonica specimens in the Shimane prefecture (Japan) host previously undescribed AMF diversity , 2017 .

[25]  J. Stajich Fungal Genomes and Insights into the Evolution of the Kingdom , 2017, Microbiology spectrum.

[26]  H. Van Erp,et al.  Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant , 2017, Science.

[27]  W. Eisenreich,et al.  Lipid transfer from plants to arbuscular mycorrhiza fungi , 2017, bioRxiv.

[28]  P. Pevzner,et al.  metaSPAdes: a new versatile metagenomic assembler. , 2017, Genome research.

[29]  J. Frouz,et al.  Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil , 2017, Front. Microbiol..

[30]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[31]  Laurent Kamel,et al.  The Comparison of Expressed Candidate Secreted Proteins from Two Arbuscular Mycorrhizal Fungi Unravels Common and Specific Molecular Tools to Invade Different Host Plants , 2017, Front. Plant Sci..

[32]  K. Garcia,et al.  Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins , 2016, Front. Microbiol..

[33]  J. Stajich,et al.  A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data , 2016, Mycologia.

[34]  J. Moncalvo,et al.  Genome-Wide Survey of Gut Fungi (Harpellales) Reveals the First Horizontally Transferred Ubiquitin Gene from a Mosquito Host , 2016, Molecular biology and evolution.

[35]  L. Farinelli,et al.  Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi , 2016, Nature Microbiology.

[36]  S. Raffaele,et al.  The two-speed genomes of filamentous pathogens: waltz with plants. , 2015, Current opinion in genetics & development.

[37]  Dennis W. Stevenson,et al.  Algal ancestor of land plants was preadapted for symbiosis , 2015, Proceedings of the National Academy of Sciences.

[38]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[39]  A. Salamov,et al.  Phylogenomic Analyses Indicate that Early Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants , 2015, Genome biology and evolution.

[40]  A. Schüßler,et al.  Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: Transkingdom gene transfer in an ancient mycoplasma-fungus association , 2015, Proceedings of the National Academy of Sciences.

[41]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[42]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[43]  Anders F. Andersson,et al.  Binning metagenomic contigs by coverage and composition , 2014, Nature Methods.

[44]  A. Wulff,et al.  Cyanobacteria in Scandinavian coastal waters — A potential source for biofuels and fatty acids? , 2014 .

[45]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[46]  Inna Dubchak,et al.  MycoCosm portal: gearing up for 1000 fungal genomes , 2013, Nucleic Acids Res..

[47]  P. Lammers,et al.  Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis , 2013, Proceedings of the National Academy of Sciences.

[48]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[49]  Michael Roberts,et al.  The MaSuRCA genome assembler , 2013, Bioinform..

[50]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[51]  Andrea Genre,et al.  Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. , 2013, The New phytologist.

[52]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[53]  Christopher Walker,et al.  Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. , 2012, The New phytologist.

[54]  N. Corradi,et al.  Meiotic genes in the arbuscular mycorrhizal fungi , 2012, Communicative & integrative biology.

[55]  M. Lohse,et al.  Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. , 2012, The Plant journal : for cell and molecular biology.

[56]  Inna Dubchak,et al.  The Genome Portal of the Department of Energy Joint Genome Institute , 2011, Nucleic Acids Res..

[57]  C. Slamovits,et al.  Conserved Meiotic Machinery in Glomus spp., a Putatively Ancient Asexual Fungal Lineage , 2011, Genome biology and evolution.

[58]  Daniel J. G. Lahr,et al.  Estimating the timing of early eukaryotic diversification with multigene molecular clocks , 2011, Proceedings of the National Academy of Sciences.

[59]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[60]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[61]  Jean Dénarié,et al.  Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza , 2011, Nature.

[62]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[63]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[64]  L. Miozzi,et al.  Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. , 2009, The New phytologist.

[65]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[66]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[67]  Mark C. Brundrett Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis , 2009, Plant and Soil.

[68]  D. Croll,et al.  Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus , 2009, BMC Evolutionary Biology.

[69]  Martin Parniske,et al.  Arbuscular mycorrhiza: the mother of plant root endosymbioses , 2008, Nature Reviews Microbiology.

[70]  J. Heitman,et al.  Identification of the sex genes in an early diverged fungus , 2008, Nature.

[71]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[72]  T. Řezanka,et al.  Diversity of the fatty acids of the Nostoc species and their statistical analysis. , 2007, Microbiological research.

[73]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[74]  Simon Wong,et al.  Evidence from comparative genomics for a complete sexual cycle in the 'asexual' pathogenic yeast Candida glabrata , 2003, Genome Biology.

[75]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[76]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[77]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[78]  K. Strimmer,et al.  Inferring confidence sets of possibly misspecified gene trees , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[79]  C. Leyval,et al.  High genetic diversity in arbuscular mycorrhizal fungi: evidence for recombination events , 2001, Heredity.

[80]  D. Redecker,et al.  Glomalean fungi from the Ordovician. , 2000, Science.

[81]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[82]  H. Gehrig,et al.  Geosiphon pyriforme, a fungus forming endocytobiosis withNostoc (Cyanobacteria), is an ancestral member of the glomales: Evidence by SSU rRNA Analysis , 1996, Journal of Molecular Evolution.

[83]  S. Eddy Hidden Markov models. , 1996, Current opinion in structural biology.

[84]  T. Taylor,et al.  Four hundred-million-year-old vesicular arbuscular mycorrhizae. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[85]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[86]  H. Kishino,et al.  Maximum likelihood inference of protein phylogeny and the origin of chloroplasts , 1990, Journal of Molecular Evolution.

[87]  H. Kishino,et al.  Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea , 1989, Journal of Molecular Evolution.

[88]  V. K. Patel,et al.  Characterization of Seven Species of Cyanobacteria for High-Quality Biomass Production , 2018 .

[89]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[90]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[91]  Peer Bork,et al.  Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation , 2007, Bioinform..

[92]  M. Kluge,et al.  The fungal bladders of the endocyanosisGeosiphon pyriforme, aGlomus-related fungus: cell wall permeability indicates a limiting pore radius of only 0.5 nm , 2005, Protoplasma.

[93]  Charles H. Langley,et al.  An examination of the constancy of the rate of molecular evolution , 2005, Journal of Molecular Evolution.

[94]  A. Schüßler,et al.  Geosiphon pyriformis—a Glomeromycotan Soil Fungus Forming Endosymbiosis with Cyanobacteria , 2005 .

[95]  M. Kluge,et al.  The Nostoc-Geosiphon Endocytobiosis , 2002 .