Enhanced n-butanol sensitivity and selectivity of Sb-doped ZnO–Co3O4 nanoparticles synthesized by solvothermal method

[1]  Qi Zhang,et al.  Available surface electronic transmission of porous SnO2/NiO hollow nanofibers for the enhanced gas-sensing performance toward n-butanol , 2021 .

[2]  B. Costello,et al.  Rare earth doped metal oxide sensor for the multimodal detection of volatile organic compounds (VOCs) , 2021 .

[3]  Zhong Li,et al.  Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method , 2020 .

[4]  J. Edel,et al.  Tuning Interfacial Energy Barriers in Heterojunctions for Anti‐Interference Sensing , 2020, Advanced Functional Materials.

[5]  H. Cui,et al.  Synthesis of ZnO Hollow Microspheres and Analysis of Their Gas Sensing Properties for n-Butanol , 2020, Crystals.

[6]  Xuchuan Jiang,et al.  Synthesis of highly oriented WO3 nanowire bundles decorated with Au for gas sensing application , 2020 .

[7]  Lu-ping Xu,et al.  Sb-doped three-dimensional ZnFe2O4 macroporous spheres for N-butanol chemiresistive gas sensors , 2020 .

[8]  M. Groves,et al.  Making NSCLC Crystal Clear: How Kinase Structures Revolutionized Lung Cancer Treatment , 2020, Crystals.

[9]  Hong Zhang,et al.  A high sensitivity and selectivity n-butanol sensor based on monodispersed Pd-doped SnO2 nanoparticles mediated by glucose carbonization , 2020, Semiconductor Science and Technology.

[10]  Xuanhua Li,et al.  Low Ni-doped Co3O4 porous nanoplates for enhanced hydrogen and oxygen evolution reaction , 2020 .

[11]  Dongjie Jiang,et al.  Correction to: A Hybrid Biofuel and Triboelectric Nanogenerator for Bioenergy Harvesting , 2020, Nano-micro letters.

[12]  Yifei Ren,et al.  ZrO2/ZnO nanocomposite materials for chemiresistive butanol sensors , 2020 .

[13]  F. Liu,et al.  In2O3 Nanoparticles Decorated ZnO Hierarchical Structures for n-Butanol Sensor , 2020 .

[14]  M. Rumyantseva,et al.  Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers , 2020 .

[15]  장현석,et al.  Commercial silk-based electronic textiles for NO2 sensing , 2020 .

[16]  H. Haick,et al.  Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials , 2020, Nano-micro letters.

[17]  Changmin Shi,et al.  H2S detection at low temperatures by Cu2O/Fe2O3 heterostructure ordered array sensors , 2020, RSC advances.

[18]  Kai Xu,et al.  Conductometric ozone sensor based on mesoporous ultrafine Co3O4 nanobricks , 2019, Sensors and Actuators B: Chemical.

[19]  Huiming Ji,et al.  Rational shape control of porous Co3O4 assemblies derived from MOF and their structural effects on n-butanol sensing. , 2019, Journal of hazardous materials.

[20]  Jun Wang,et al.  Core-shell structure of ZnO/Co3O4 composites derived from bimetallic-organic frameworks with superior sensing performance for ethanol gas , 2019, Applied Surface Science.

[21]  Eric Fleury,et al.  Tracking Clinical Staff Behaviors in an Operating Room , 2019, Sensors.

[22]  Jun Guo,et al.  Pyrolyzing Co/Zn bimetallic organic framework to form p-n heterojunction of Co3O4/ZnO for detection of formaldehyde , 2019, Sensors and Actuators B: Chemical.

[23]  Z. Lou,et al.  Ultrathin nanorod-assembled SnO2 hollow cubes for high sensitive n-butanol detection , 2019, Sensors and Actuators B: Chemical.

[24]  Dongzhi Zhang,et al.  Metal-organic frameworks-derived hollow zinc oxide/cobalt oxide nanoheterostructure for highly sensitive acetone sensing , 2019, Sensors and Actuators B: Chemical.

[25]  Tommaso Addabbo,et al.  Co3O4/Al-ZnO Nano-composites: Gas Sensing Properties , 2019, Sensors.

[26]  Xinxin Xing,et al.  Raspberry-like SnO 2 hollow nanostructure as a high response sensing material of gas sensor toward n-butanol gas , 2018, Journal of Physics and Chemistry of Solids.

[27]  Xinxin Xing,et al.  Sensitive and selective n-butanol gas detection based on ZnO nanocrystalline synthesized by a low-temperature solvothermal method , 2018, Physica E: Low-dimensional Systems and Nanostructures.

[28]  Yang Qu,et al.  The n-butanol gas-sensing properties of monoclinic scheelite BiVO4 nanoplates , 2018, Physica E: Low-dimensional Systems and Nanostructures.

[29]  F. Liu,et al.  Au modified single crystalline and polycrystalline composite tin oxide for enhanced n-butanol sensing performance , 2018 .

[30]  C. Liu,et al.  Surface functionalization of Co3O4 hollow spheres with ZnO nanoparticles for modulating sensing properties of formaldehyde , 2017 .

[31]  Vijay K. Tomer,et al.  Ordered mesoporous In-(TiO2/WO3) nanohybrid: An ultrasensitive n-butanol sensor , 2017 .

[32]  Giovanni Neri,et al.  Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review , 2016 .

[33]  Il-Doo Kim,et al.  Advances and new directions in gas-sensing devices , 2013 .

[34]  Pradyot Patnaik,et al.  A comprehensive guide to the hazardous properties of chemical substances , 2007 .

[35]  H. Weetall,et al.  The sixth international meeting on chemical sensors , 1996 .

[36]  M. Rumyantseva,et al.  Comparison of Au-functionalized semiconductor metal oxides in sensitivity to VOC , 2021, Sensors and Actuators B: Chemical.

[37]  Chengwen Song,et al.  Morphology-controlled synthesis of ZnSnO3 hollow spheres and their n-butanol gas-sensing performance , 2021 .

[38]  Lin Chen,et al.  Electrospinning preparation of Pd@Co3O4-ZnO composite nanofibers and their highly enhanced VOC sensing properties , 2019, Materials Research Bulletin.

[39]  P. Yeh,et al.  Photoresponsive and Ultraviolet to Visible-Light Range Photocatalytic Properties of ZnO:Sb Nanowires , 2011 .