Thermal lensing and spherical aberration in high-power transversally pumped laser rods

Abstract A precise knowledge of the thermal effects in laser crystals is very important for high-power laser design, but some relevant parameters are most often neglected in their calculation. In this paper, with the example of transversally pumped, high-power Nd:YAG lasers, we show the importance of the thermal dependence of the gain medium’s physical properties such as the thermal conductivity, the d n /d T and the expansion coefficient on the thermal aberration and thermal lensing values; we also prove that the choice of the resonator can influence the amount of spherical aberration. Finally, analytically calculated values are confronted to experimental values, and show a very good agreement.

[1]  A. Lupei,et al.  Emission dynamics of the 4 F 3 / 2 level of Nd 3 + in YAG at low pump intensities , 2000 .

[2]  Walter Koechner,et al.  Solid-State Laser Engineering , 1976 .

[3]  N. Hodgson,et al.  Influence of spherical aberration of the active medium on the performance of Nd:YAG lasers , 1993 .

[4]  G. A. Slack,et al.  Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions , 1971 .

[5]  J. Bourderionnet,et al.  Influence of aberrations on fundamental mode of high power rod solid-state lasers , 2002 .

[6]  Evan P. Chicklis,et al.  CW laser operation of Nd:YLF , 1982 .

[7]  T. Fan Heat generation in Nd:YAG and Yb:YAG , 1993 .

[8]  J. Foster,et al.  Thermal Effects in a Nd:YAG Laser , 1970 .

[9]  Helicoid modal analysis of laser oscillators with spherical aberration. , 2002, Applied optics.

[10]  R. Iffländer,et al.  Solid-State Lasers for Materials Processing , 2001 .

[11]  L. G. DeShazer,et al.  Nd:YAG quantum efficiency and related radiative properties , 1989 .

[12]  H. Weber,et al.  Modeling of thermal lensing and higher order ring mode oscillation in end-pumped C-W Nd:YAG lasers , 1992 .

[13]  S. Jackel,et al.  Characterization of radiative and nonradiative Processes in Nd:YAG lasers by comparing direct and band pumping , 2004, IEEE Journal of Quantum Electronics.

[14]  T. Fan,et al.  Thermal coefficients of the expansion and refractive index in YAG. , 1999, Applied optics.

[15]  D. Nikogosyan,et al.  Properties of Optical and Laser-Related Materials: A Handbook , 1997 .

[16]  D. C. Hanna,et al.  Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG , 1998 .

[17]  J. Foster,et al.  Index of refraction and expansion thermal coefficients of Nd:YAG. , 1968, Applied optics.

[18]  Daniel Vivien,et al.  A simple model for the prediction of thermal conductivity in pure and doped insulating crystals , 2003 .

[19]  David C. Brown Nonlinear thermal distortion in YAG rod amplifiers , 1998 .

[20]  Stephen A. Payne,et al.  Laser demonstration of Yb/sub 3/Al/sub 5/O/sub 12/ (YbAG) and materials properties of highly doped Yb:YAG , 2001 .

[21]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[22]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[23]  Raymond J. Beach,et al.  Characterization of the heat loading of Nd-doped YAG, YOS, YLF, and GGG excited at diode pumping wavelengths , 1995 .

[24]  D. Rockwell,et al.  Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG , 1988 .

[25]  T. Gupta,et al.  Thermal Expansion of Yttrium Aluminum Garnet , 1971 .