Partial Molar Volumes of Ionic and Nonionic Organic Solutes in Water: A Simple Additivity Scheme Based on the Intrinsic Volume Approach

AbstractPartial molar volumes at infinite dilution, $$\overline {V^0 } $$ , in water at 25°C for organicelectrolytes and nonelectrolytes are described through a simple additivity schemebased on the intrinsic volume approach. The contributions to $$\overline {V^0 } $$ of hydrocarbongroups were determined from the “experimental” CH2 increment assuming thatall hydrocarbon portions have the same packing efficiency in aqueous solution.Twenty-two charged and 51 uncharged groups, are assigned a $$\overline {V^0 } $$ contribution and the partial molar volumes of nearly 400 monofunctional organic solutes arereproduced with a root mean square of deviation of 0.9 cm3-mol−1. The differentvolumetric behavior of linear, branched, and cyclic molecules is discussed. Acomparison is made of uncharged (hydrocarbon and polar) with charged groups,as well as of groups with small molecules and ions. A relative estimate is givenof the volume effects (cavity formation, hydrophobic hydration, solvent shrinkage,H bonding, and electrostriction) involved in the interaction of hydrophobic andhydrophilic groups with water. Deviations from additivity for mono- andpolyfunctional solutes, including polyelectrolytes, are analyzed in terms of (1) extensionof the hydration cosphere of different polar centers: (2) intramolecular interactionsand their dependence on nature, number, and mutual distance of interactinggroups. The van der Waals volume Vw is extensively used as molecular descriptor.Estimates of Vw for both charged and uncharged groups are presented.

[1]  A. Hakin,et al.  Some thermodynamic properties of aqueous amino acid systems at 288.15, 298.15, 313.15 and 328.15 K: group additivity analyses of standard-state volumes and heat capacities , 1994 .

[2]  W. Wynne-Jones,et al.  The behaviour of mixtures of hydrogen peroxide and water. Part 1.—Determination of the densities of mixtures of hydrogen peroxide and water , 1952 .

[3]  W. Gerth Effects of dissolved electrolytes on the solubility and partial molar volume of helium in water from 50 to 400 atmospheres at 25°C , 1983 .

[4]  A. Bondi,et al.  Physical properties of molecular crystals liquids, and glasses , 1968 .

[5]  R. Wood,et al.  Apparent molar volumes of aqueous argon, ethylene, and xenon from 300 to 716 K , 1988 .

[6]  R. Zana The volume changes upon protonation of n-alkylcarboxylate ions and n-alkylamines in aqueous solutions. Extension to the interpretation of volumic effects observed in solutions of molecular ions, polyelectrolytes, micellar detergents and proteins , 1977 .

[7]  G. Mann,et al.  Konformation und physikalische daten von alkanen und cyclanen—II : Einfach und zweifach verzweigte alkane , 1967 .

[8]  R. Battino,et al.  Partial molar volumbes of gases at infinite dilution in water at 298.15 K , 1982 .

[9]  D. Golden,et al.  Additivity rules for the estimation of thermochemical properties , 1969 .

[10]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[11]  J. Hine,et al.  Structural effects on rates and equilibriums. XIX. Intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions , 1975 .

[12]  R. Philippe,et al.  Propriétés physico-chimiques et thermodynamiques du système binaire hexamethylphotriamide + eau , 1975 .

[13]  G. Mann Konformation und physikalische daten von alkanen und cyclanen—I : Über lineare beziehungen zwischen der konformation und den physikalischen daten isomerer kohlenwasserstoffe , 1967 .

[14]  C. M. Criss,et al.  Effect of solvent on the partial molal volumes and heat capacities of nonelectrolytes , 1981, Journal of Solution Chemistry.

[15]  L. E. Sutton,et al.  Tables of interatomic distances and configuration in molecules and ions , 1958 .

[16]  A. Bondi van der Waals Volumes and Radii , 1964 .

[17]  C. Jolicoeur,et al.  Thermodynamic properties of aqueous organic solutes in relation to their structure. Part III. Apparent molal volumes and heat capacities of low molecular weight alcohols and polyols at 25 °C , 1976 .

[18]  K. Gubbins,et al.  Partial molal volumes of gases dissolved in electrolyte solutions , 1972 .

[19]  M. Gordon,et al.  Molecular orbital theory of the electronic structure of organic compounds. I. Substituent effects and dipole moments. , 1967, Journal of the American Chemical Society.

[20]  C. M. Criss,et al.  Apparent molar volumes of aqueous solutions of some organic solutes at the pressure 28 MPa and temperatures to 598 K , 1996 .

[21]  F. Mavelli,et al.  Group contributions to the infinite dilution partial molar volumes of alkanes, alcohols, and glycols in polar organic solvents , 1997 .

[22]  F. J. Luque,et al.  The effect of hydration on the molecular charge distribution of cations. An ab initio SCRF study , 1995 .

[23]  J. F. Reading,et al.  Thermodynamic properties of peptide solutions. Part 6.—The amino acid side-chain contributions to the partial molar volumes and heat capacities of some tripeptides in aqueous solution , 1990 .

[24]  Cheng Chang,et al.  Properties of atoms in molecules: atomic volumes , 1987 .

[25]  E. King Absolute partial molar ionic volumes , 1970 .

[26]  R. Pierotti,et al.  A scaled particle theory of aqueous and nonaqueous solutions , 1976 .

[27]  L. Lepori,et al.  Volume changes in the proton ionization of amines in water. 2. Amino alcohols, amino ethers, and diamines , 1977 .

[28]  A. Gavezzotti,et al.  The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and of solid-state organic reactivity , 1983 .

[29]  N. Nishimura,et al.  Additivity of the partial molar volumes of organic compounds , 1987 .

[30]  Michael L. Connolly,et al.  Computation of molecular volume , 1985 .

[31]  V. Majer,et al.  Volumes of aqueous solutions of CH4, CO2, H2S and NH3at temperatures from 298.15 K to 705 K and pressures to 35 MPa , 1996 .

[32]  L. Hepler,et al.  Thermodynamics of aqueous carbon dioxide and sulfur dioxide: heat capacities, volumes, and the temperature dependence of ionization , 1983 .

[33]  S. Arakawa,et al.  Contribution of hydrogen bonds to the partial molar volumes of nonionic solutes in water , 1975 .

[34]  O. Kulikov,et al.  Excess enthalpies and apparent molar volumes of aqueous solutions of crown ethers and cryptand(222) at 25°C , 1993 .

[35]  Frank J. Millero,et al.  The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25.degree.C , 1978 .

[36]  Estanislao Silla,et al.  GEPOL: An improved description of molecular surfaces. I. Building the spherical surface set , 1990 .

[37]  E. Yeager,et al.  Determination of Ionic Partial Molal Volumes from Ionic Vibration Potentials1 , 1966 .

[38]  F. Shahidi,et al.  Effect of solvent (benzene, ethanol, cyclohexane) on the partial molal volumes of organic compounds , 1979 .

[39]  J. T. Edward,et al.  Molecular Volumes and the Stokes-Einstein Equation. , 1970 .

[40]  C. Tondre,et al.  Apparent molal volumes of polyelectrolytes in aqueous solutions , 1972 .

[41]  Vincenzo Mollica,et al.  Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution , 1981 .

[42]  D. Katz,et al.  Vapor-Liquid Equilibria For Binary Hydrocarbon-Water Systems , 1953 .

[43]  J. T. Edward,et al.  Relation between van der Waals and Partial Molal Volumes of Organic Molecules in Water , 1975 .

[44]  F. Shahidi,et al.  Partial molal volumes of organic compounds in carbon tetrachloride. 1. Alkanes: conformational effects , 1978 .

[45]  F. Shahidi,et al.  Partial molal volumes of organic compounds in carbon tetrachloride. IV. Ketones, alcohols, and ethers , 1979 .

[46]  L. Hepler,et al.  Heat capacities and volumes of dissociation of phosphoric acid (1st, 2nd, and 3rd), bicarbonate ion, and bisulfate ion in aqueous solution , 1982 .

[47]  R. Wood,et al.  Apparent molar heat capacities of aqueous solutions of phosphoric acid and sulfur dioxide from 303 to 623 K and a pressure of 28 MPa , 1997 .

[48]  E. King Volume changes for ionization of formic, acetic, and butyric acids and the glycinium ion in aqueous solution at 25.deg. , 1969 .

[49]  Iñaki Tuñón,et al.  GEPOL: An improved description of molecular surfaces II. Computing the molecular area and volume , 1991 .