Core-based criterion for extreme supermodular functions
暂无分享,去创建一个
[1] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[2] Gert de Cooman,et al. Extreme lower probabilities , 2008, Fuzzy Sets Syst..
[3] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[4] Tatsuro Ichiishi,et al. Super-modularity: Applications to convex games and to the greedy algorithm for LP , 1981 .
[5] James G. Oxley,et al. Matroid theory , 1992 .
[6] Milan Studený,et al. Efficient Algorithms for Conditional Independence Inference , 2010, J. Mach. Learn. Res..
[7] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[8] Robert J. Weber,et al. Probabilistic Values for Games , 1977 .
[9] Bas van Velzen,et al. Characterizing convexity of games using marginal vectors , 2004, Discret. Appl. Math..
[10] Jeffrey Doker. Geometry of Generalized Permutohedra , 2011 .
[11] A. Postnikov,et al. Faces of Generalized Permutohedra , 2006, math/0609184.
[12] Kenji Kashiwabara. Extremality of submodular functions , 2000, Theor. Comput. Sci..
[13] Milan Studený,et al. Probabilistic conditional independence structures , 2006, Information science and statistics.
[14] P. Walley. Statistical Reasoning with Imprecise Probabilities , 1990 .
[15] Michel Grabisch,et al. CHAPTER 34 – Set Functions over Finite Sets: Transformations and Integrals , 2002 .
[16] Federico Ardila,et al. Matroid Polytopes and their Volumes , 2010, Discret. Comput. Geom..
[17] G. Koshevoy,et al. Cores of Cooperative Games, Superdifferentials of Functions, and the Minkowski Difference of Sets☆ , 2000 .
[18] G. Nemhauser,et al. Integer Programming , 2020 .
[19] Mark Voorneveld,et al. A generalization of the Shapley–Ichiishi result , 2010, Int. J. Game Theory.
[20] L. Shapley. Cores of convex games , 1971 .
[21] Jason Ryder Morton,et al. Geometry of conditional independence , 2007 .
[22] Stanislav Zivny,et al. The Expressive Power of Binary Submodular Functions , 2009, MFCS.
[23] J. Neumann,et al. Theory of games and economic behavior , 1945, 100 Years of Math Milestones.
[24] M. Studený,et al. Extreme Supermodular Set Functions Over Five Variables , 2000 .
[25] H. Raiffa,et al. Games and Decisions: Introduction and Critical Survey. , 1958 .
[26] S. David Promislow,et al. Supermodular Functions on Finite Lattices , 2005, Order.
[27] Alexander Postnikov,et al. Permutohedra, Associahedra, and Beyond , 2005, math/0507163.
[28] Walter Meyer. Indecomposable Polytopes , 1974 .
[29] Cones of elementary imsets and supermodular functions: a review and some new results , 2011, 1109.2408.
[30] Jasper De Bock,et al. Extreme Lower Previsions , 2015 .
[31] H. Q. Nguyen. Semimodular functions and combinatorial geometries , 1978 .
[32] Satoru Fujishige,et al. Submodular functions and optimization , 1991 .
[33] J. Rosenmüller,et al. Extreme convex set functions with finite carrier: General theory , 1974, Discret. Math..
[34] H. G. Weidner,et al. A class of extreme convex set functions with finite carrier , 1973 .
[35] Milan Studený,et al. Polyhedral aspects of score equivalence in Bayesian network structure learning , 2015, Mathematical Programming.
[36] David Schmeidler,et al. Cores of Exact Games, I* , 1972 .
[37] Alain Chateauneuf,et al. Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion , 1989, Classic Works of the Dempster-Shafer Theory of Belief Functions.
[38] Jack Edmonds,et al. Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.
[39] David J. Hand. Statistical Reasoning with Imprecise Probabilities , 1993 .
[40] Jirí Vomlel,et al. On open questions in the geometric approach to structural learning Bayesian nets , 2011, Int. J. Approx. Reason..
[41] László Lovász,et al. Submodular functions and convexity , 1982, ISMP.