Core-based criterion for extreme supermodular functions

We give a necessary and sufficient condition for extremality of a supermodular function based on its min-representation by means of (vertices of) the corresponding core polytope. The condition leads to solving a certain simple linear equation system determined by the combinatorial core structure. This result allows us to characterize indecomposability in the class of generalized permutohedra. We provide an in-depth comparison between our result and the description of extremality in the supermodular/submodular cone achieved by other researchers.

[1]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[2]  Gert de Cooman,et al.  Extreme lower probabilities , 2008, Fuzzy Sets Syst..

[3]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[4]  Tatsuro Ichiishi,et al.  Super-modularity: Applications to convex games and to the greedy algorithm for LP , 1981 .

[5]  James G. Oxley,et al.  Matroid theory , 1992 .

[6]  Milan Studený,et al.  Efficient Algorithms for Conditional Independence Inference , 2010, J. Mach. Learn. Res..

[7]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[8]  Robert J. Weber,et al.  Probabilistic Values for Games , 1977 .

[9]  Bas van Velzen,et al.  Characterizing convexity of games using marginal vectors , 2004, Discret. Appl. Math..

[10]  Jeffrey Doker Geometry of Generalized Permutohedra , 2011 .

[11]  A. Postnikov,et al.  Faces of Generalized Permutohedra , 2006, math/0609184.

[12]  Kenji Kashiwabara Extremality of submodular functions , 2000, Theor. Comput. Sci..

[13]  Milan Studený,et al.  Probabilistic conditional independence structures , 2006, Information science and statistics.

[14]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[15]  Michel Grabisch,et al.  CHAPTER 34 – Set Functions over Finite Sets: Transformations and Integrals , 2002 .

[16]  Federico Ardila,et al.  Matroid Polytopes and their Volumes , 2010, Discret. Comput. Geom..

[17]  G. Koshevoy,et al.  Cores of Cooperative Games, Superdifferentials of Functions, and the Minkowski Difference of Sets☆ , 2000 .

[18]  G. Nemhauser,et al.  Integer Programming , 2020 .

[19]  Mark Voorneveld,et al.  A generalization of the Shapley–Ichiishi result , 2010, Int. J. Game Theory.

[20]  L. Shapley Cores of convex games , 1971 .

[21]  Jason Ryder Morton,et al.  Geometry of conditional independence , 2007 .

[22]  Stanislav Zivny,et al.  The Expressive Power of Binary Submodular Functions , 2009, MFCS.

[23]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[24]  M. Studený,et al.  Extreme Supermodular Set Functions Over Five Variables , 2000 .

[25]  H. Raiffa,et al.  Games and Decisions: Introduction and Critical Survey. , 1958 .

[26]  S. David Promislow,et al.  Supermodular Functions on Finite Lattices , 2005, Order.

[27]  Alexander Postnikov,et al.  Permutohedra, Associahedra, and Beyond , 2005, math/0507163.

[28]  Walter Meyer Indecomposable Polytopes , 1974 .

[29]  Cones of elementary imsets and supermodular functions: a review and some new results , 2011, 1109.2408.

[30]  Jasper De Bock,et al.  Extreme Lower Previsions , 2015 .

[31]  H. Q. Nguyen Semimodular functions and combinatorial geometries , 1978 .

[32]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[33]  J. Rosenmüller,et al.  Extreme convex set functions with finite carrier: General theory , 1974, Discret. Math..

[34]  H. G. Weidner,et al.  A class of extreme convex set functions with finite carrier , 1973 .

[35]  Milan Studený,et al.  Polyhedral aspects of score equivalence in Bayesian network structure learning , 2015, Mathematical Programming.

[36]  David Schmeidler,et al.  Cores of Exact Games, I* , 1972 .

[37]  Alain Chateauneuf,et al.  Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion , 1989, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[38]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[39]  David J. Hand Statistical Reasoning with Imprecise Probabilities , 1993 .

[40]  Jirí Vomlel,et al.  On open questions in the geometric approach to structural learning Bayesian nets , 2011, Int. J. Approx. Reason..

[41]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.