The images of constacyclic codes and new quantum codes

Let q be a prime power and $$m\ge 2$$ m ≥ 2 be a positive integer. A sufficient condition for the $$q^2$$ q 2 -ary images of constacyclic codes over $${\mathbb {F}}_{q^{2m}}$$ F q 2 m to be Hermitian self-orthogonal is presented. Hermitian self-orthogonal codes over $${\mathbb {F}}_{q^{2}}$$ F q 2 are obtained as the images of constacyclic codes over $${\mathbb {F}}_{q^{2m}}$$ F q 2 m . Two classes of quantum codes are derived by employing the Hermitian construction. The construction produces quantum codes with better parameters than the previously known ones.

[1]  Chaoping Xing,et al.  Asymptotic bounds on quantum codes from algebraic geometry codes , 2006, IEEE Transactions on Information Theory.

[2]  Guanghui Zhang,et al.  Constructions of New Nonbinary Quantum Codes , 2015 .

[3]  Nima Jafari Navimipour,et al.  Quantum-Dot Cellular Automata in Designing the Arithmetic and Logic Unit: Systematic Literature Review, Classification and Current Trends , 2018, J. Circuits Syst. Comput..

[4]  Shixin Zhu,et al.  Constacyclic Codes and Some New Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[5]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[6]  G. L. Guardia Constructions of new families of nonbinary quantum codes , 2009 .

[7]  Y. Edel,et al.  Quantum twisted codes , 2000 .

[8]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[9]  Jaewan Kim,et al.  Quantum Shift Register , 2001, quant-ph/0112107.

[10]  Jian Gao,et al.  Constacyclic codes over the ring Fp + vFp and their applications of constructing new non-binary quantum codes , 2018, Int. J. Inf. Coding Theory.

[11]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[12]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[13]  Lin Xiaoyan Quantum cyclic and constacyclic codes , 2004, IEEE Transactions on Information Theory.

[14]  Guanghui Zhang,et al.  Application of Constacyclic Codes to Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[15]  Nima Jafari Navimipour,et al.  Designing Nanoscale Counter Using Reversible Gate Based on Quantum-Dot Cellular Automata , 2018 .

[16]  M. Wilde Quantum Shift Register Circuits , 2009, 0903.3894.

[17]  Yang Liu,et al.  A class of constacyclic BCH codes and new quantum codes , 2017, Quantum Inf. Process..

[18]  D. Marinescu,et al.  Classical and Quantum Information Theory , 2011 .

[19]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[20]  Andrew Thangaraj,et al.  Self-Orthogonality of $q$ -Ary Images of $q^{m}$ -Ary Codes and Quantum Code Construction , 2007, IEEE Transactions on Information Theory.

[21]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[22]  Shixin Zhu,et al.  New quantum MDS codes derived from constacyclic codes , 2014, Quantum Inf. Process..

[23]  Chaoping Xing,et al.  Generalization of Steane's Enlargement Construction of Quantum Codes and Applications , 2010, IEEE Transactions on Information Theory.

[24]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[25]  Yuanyuan Huang,et al.  New optimal asymmetric quantum codes and quantum convolutional codes derived from constacyclic codes , 2019, Quantum Inf. Process..

[26]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[27]  Hao Chen,et al.  Quantum codes from concatenated algebraic-geometric codes , 2005, IEEE Transactions on Information Theory.

[28]  Gérard D. Cohen,et al.  On binary constructions of quantum codes , 1999, IEEE Trans. Inf. Theory.

[29]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[30]  Nima Jafari Navimipour,et al.  Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology , 2019, Optik.

[31]  Dilip V. Sarwate,et al.  Pseudocyclic maximum- distance-separable codes , 1990, IEEE Trans. Inf. Theory.

[32]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[33]  D. Marinescu,et al.  Classical and Quantum Information , 2012 .

[34]  Dwijendra K. Ray-Chaudhuri,et al.  The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes , 2001, Des. Codes Cryptogr..

[35]  Shixin Zhu,et al.  Quantum negacyclic codes , 2013 .

[36]  T. Beth,et al.  Cyclic quantum error–correcting codes and quantum shift registers , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  Dengguo Feng,et al.  On Non-binary Quantum BCH Codes , 2006, TAMC.

[38]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[39]  Markus Grassl,et al.  Quantum Reed-Solomon Codes , 1999, AAECC.

[40]  Z. Wan Lectures on Finite Fields and Galois Rings , 2003 .

[41]  Andrew Thangaraj,et al.  Quantum codes from cyclic codes over GF(4m) , 2001, IEEE Trans. Inf. Theory.