Blind identification of FIR systems excited by discrete-alphabet inputs
暂无分享,去创建一个
[1] D. Brillinger. The identification of polynomial systems by means of higher order spectra , 1970 .
[2] Benjamin Friedlander,et al. Asymptotically optimal estimation of MA and ARMA parameters of non-Gaussian processes from high-order moments , 1990 .
[3] Jitendra K. Tugnait,et al. Comments on 'New criteria for blind deconvolution of nonminimum phase systems (channels)' , 1992, IEEE Trans. Inf. Theory.
[4] A. Benveniste,et al. Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications , 1980 .
[5] Jitendra K. Tugnait,et al. Identification of linear stochastic systems via second- and fourth-order cumulant matching , 1987, IEEE Trans. Inf. Theory.
[6] Jerry M. Mendel,et al. Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..
[7] Giancarlo Prati,et al. Blind Equalization and Carrier Recovery Using a "Stop-and-Go" Decision-Directed Algorithm , 1987, IEEE Trans. Commun..
[8] Ehud Weinstein,et al. New criteria for blind deconvolution of nonminimum phase systems (channels) , 1990, IEEE Trans. Inf. Theory.
[9] A W Lohmann,et al. Phase and amplitude recovery from bispectra. , 1984, Applied optics.
[10] D. Donoho. ON MINIMUM ENTROPY DECONVOLUTION , 1981 .
[11] Benjamin Friedlander,et al. Blind equalization of digital communication channels using high-order moments , 1991, IEEE Trans. Signal Process..
[12] Chrysostomos L. Nikias,et al. Estimation of multipath channel response in frequency selective channels , 1989, IEEE J. Sel. Areas Commun..