On Compact Formulations for Integer Programs Solved by Column Generation

Column generation has become a powerful tool in solving large scale integer programs. It is well known that most of the often reported compatibility issues between pricing subproblem and branching rule disappear when branching decisions are based on imposing constraints on the subproblem's variables. This can be generalized to branching on variables of a so-called compact formulation. We constructively show that such a formulation always exists under mild assumptions. It has a block diagonal structure with identical subproblems, each of which contributes only one column in an integer solution. This construction has an interpretation as reversing a Dantzig-Wolfe decomposition. Our proposal opens the way for the development of branching rules adapted to the subproblem's structure and to the linking constraints.

[1]  Dennis J. Sweeney,et al.  A Method of Decomposition for Integer Programs , 1979, Oper. Res..

[2]  L. V. Kantorovich,et al.  Mathematical Methods of Organizing and Planning Production , 1960 .

[3]  Sándor P. Fekete,et al.  Solving a "Hard" problem to approximate an "Easy" one: heuristics for maximum matchings and maximum traveling salesman problems , 2001, JEAL.

[4]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[5]  Jacques Desrosiers,et al.  Routing with time windows by column generation , 1983, Networks.

[6]  Cynthia Barnhart,et al.  Using Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems , 2000, Oper. Res..

[7]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[8]  Esther M. Arkin,et al.  The Freeze-Tag Problem: How to Wake Up a Swarm of Robots , 2002, SODA '02.

[9]  Rolf H. Möhring,et al.  Scheduling under uncertainty: Optimizing against a randomizing adversary , 2000, APPROX.

[10]  Christian Liebchen,et al.  Finding Short Integral Cycle Bases for Cyclic Timetabling , 2003, ESA.

[11]  Jacques Desrosiers,et al.  2-Path Cuts for the Vehicle Routing Problem with Time Windows , 1997, Transp. Sci..

[12]  Esther M. Arkin,et al.  On the Reflexivity of Point Sets , 2001, WADS.

[13]  Martin Skutella Approximating the single source unsplittable min-cost flow problem , 2002, Math. Program..

[14]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[15]  Rolf H. Möhring,et al.  On project scheduling with irregular starting time costs , 2001, Oper. Res. Lett..

[16]  Marc Uetz,et al.  Scheduling Scarce Resources in Chemical Engineering , 2001 .

[17]  Michael A. Trick,et al.  A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..

[18]  Han Hoogeveen,et al.  Preemptive scheduling with rejection , 2000, Math. Program..

[19]  Ma Preprint 761-2002: On Cyclic Timetabling and Cycles in Graphs , 2003 .

[20]  José M. Valério de Carvalho,et al.  LP models for bin packing and cutting stock problems , 2002, Eur. J. Oper. Res..

[21]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[22]  Marc Uetz,et al.  Resource-constrained project scheduling: from a lagrangian relaxation to competitive solutions , 2000 .

[23]  Martin W. P. Savelsbergh,et al.  A Branch-and-Price Algorithm for the Generalized Assignment Problem , 1997, Oper. Res..

[24]  Berit Johannes,et al.  Scheduling parallel jobs to minimize the makespan , 2006, J. Sched..

[25]  Alexander H. G. Rinnooy Kan,et al.  Vehicle Routing with Time Windows , 1987, Oper. Res..

[26]  Sándor P. Fekete,et al.  Minimizing the Stabbing Number of Matchings, Trees, and Triangulations , 2003, SODA '04.

[27]  Michael A. Trick,et al.  Optimal shift scheduling: A branch-and-price approach , 2000 .

[28]  Mwp Martin Savelsbergh,et al.  VEHICLE ROUTING WITH TIME WINDOWS: OPTIMIZATION AND APPROXIMATION. VEHICLE ROUTING: METHOD AND STUDIES. STUDIES IN MANAGEMENT SCIENCE AND SYSTEMS - VOLUME 16 , 1987 .

[29]  Jacques Desrosiers,et al.  Time Constrained Routing and Scheduling , 1992 .

[30]  Martin Skutella,et al.  Scheduling precedence-constrained jobs with stochastic processing times on parallel machines , 2001, SODA '01.

[31]  Rolf H. Möhring,et al.  Solving Project Scheduling Problems by Minimum Cut Computations , 2002, Manag. Sci..

[32]  Martin Skutella,et al.  The k-Splittable Flow Problem , 2005, Algorithmica.

[33]  Michael R. Bussieck,et al.  A fast algorithm for near cost optimal line plans , 2004, Math. Methods Oper. Res..

[34]  Guy Desaulniers,et al.  The shortest path problem with forbidden paths , 2002, Eur. J. Oper. Res..

[35]  Jacques Desrosiers,et al.  A Unified Framework for Deterministic Time Constrained Vehicle Routing and Crew Scheduling Problems , 1998 .

[36]  Esther M. Arkin,et al.  Optimal covering tours with turn costs , 2001, SODA '01.

[37]  Rolf H. Möhring,et al.  Scheduling with AND/OR Precedence Constraints , 2004, SIAM J. Comput..

[38]  Martin Skutella,et al.  Convex quadratic and semidefinite programming relaxations in scheduling , 2001, JACM.

[39]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[40]  Jacques Desrosiers,et al.  The Preferential Bidding System at Air Canada , 1997, Transp. Sci..

[41]  Han Hoogeveen,et al.  Parallel Machine Scheduling by Column Generation , 1999, Oper. Res..

[42]  Rolf H. Möhring,et al.  Scheduling under Uncertainty: Bounding the Makespan Distribution , 2001, Computational Discrete Mathematics.

[43]  François Vanderbeck,et al.  Exact Algorithm for Minimising the Number of Setups in the One-Dimensional Cutting Stock Problem , 2000, Oper. Res..

[44]  Rolf H. Möhring,et al.  A Case Study in Periodic Timetabling , 2002, ATMOS.

[45]  SGfren Holm,et al.  A unified approach for price directive decomposition procedures in integer programming , 1988, Discret. Appl. Math..

[46]  Ellis L. Johnson Modelling and strong linear programs for mixed integer programming , 1989 .

[47]  Laurence A. Wolsey,et al.  An exact algorithm for IP column generation , 1994, Oper. Res. Lett..

[48]  François Vanderbeck,et al.  On Dantzig-Wolfe Decomposition in Integer Programming and ways to Perform Branching in a Branch-and-Price Algorithm , 2000, Oper. Res..

[49]  L MarcoE.,et al.  Dual variable based fathoming in dynamic programs for column generation , 2004 .

[50]  Warren B. Powell,et al.  Solving Parallel Machine Scheduling Problems by Column Generation , 1999, INFORMS J. Comput..

[51]  Ekkehard Köhler,et al.  Recognizing graphs without asteroidal triples , 2000, J. Discrete Algorithms.

[52]  M Marc Sol Column generation techniques for pickup and delivery problems , 1994 .

[53]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[54]  Nicole Megow,et al.  Scheduling to Minimize Average Completion Time Revisited: Deterministic On-Line Algorithms , 2003, WAOA.

[55]  Martin Skutella,et al.  An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times , 2006, Algorithmica.

[56]  Pamela H. Vance,et al.  Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problem , 1998, Comput. Optim. Appl..

[57]  Jürgen Teich,et al.  Optimal FPGA module placement with temporal precedence constraints , 2001, Proceedings Design, Automation and Test in Europe. Conference and Exhibition 2001.

[58]  José M. Valério de Carvalho,et al.  Exact solution of bin-packing problems using column generation and branch-and-bound , 1999, Ann. Oper. Res..