Quantile Processes for Semi and Nonparametric Regression
暂无分享,去创建一个
[1] R. Koenker. Quantile Regression: Fundamentals of Quantile Regression , 2005 .
[2] Zhongjun Qu,et al. Nonparametric estimation and inference on conditional quantile processes , 2015 .
[3] Holger Dette,et al. Non‐crossing non‐parametric estimates of quantile curves , 2008 .
[4] P. Shi,et al. Convergence rate of b-spline estimators of nonparametric conditional quantile functions ∗ , 1994 .
[5] L. Briollais,et al. Application of quantile regression to recent genetic and -omic studies , 2014, Human Genetics.
[6] Jianhua Z. Huang. Local asymptotics for polynomial spline regression , 2003 .
[7] Roger Koenker,et al. Inference on the Quantile Regression Process , 2000 .
[8] V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0083.
[9] William F. Moss,et al. Decay rates for inverses of band matrices , 1984 .
[10] Simo Puntanen,et al. Schur complements in statistics and probability , 2005 .
[11] Xuming He,et al. Bivariate Tensor-Product B-Splines in a Partly Linear Model , 1996 .
[12] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[13] B. Cade,et al. A gentle introduction to quantile regression for ecologists , 2003 .
[14] Roger Koenker,et al. An empirical quantile function for linear models with iid errors , 1981 .
[15] K. Knight. Asymptotics of the regression quantile basic solution under misspecification , 2008 .
[16] Miguel A. Delgado,et al. Conditional Stochastic Dominance Testing , 2013 .
[17] Victor Chernozhukov,et al. Quantile Regression Under Misspecification, with an Application to the U.S. Wage Structure , 2004 .
[18] Xiaotong Shen,et al. Local asymptotics for regression splines and confidence regions , 1998 .
[19] Holger Dette,et al. Quantile Spectral Processes: Asymptotic Analysis and Inference , 2014, 1401.8104.
[20] P. Massart,et al. About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .
[21] Young K. Lee,et al. Efficient semiparametric estimation in generalized partially linear additive models , 2010 .
[22] Xiaohong Chen. Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models , 2007 .
[23] Jianhua Z. Huang,et al. Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data , 2014 .
[24] Stephen G. Donald,et al. Statistical Inference with Generalized Gini Indices of Inequality, Poverty, and Welfare , 2009 .
[25] Guang Cheng,et al. Distributed inference for quantile regression processes , 2017, The Annals of Statistics.
[26] L. Fernholz. von Mises Calculus For Statistical Functionals , 1983 .
[27] So K Kb. EFFICIENT SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR QUANTILE REGRESSION MODEL , 2003 .
[28] Victor Chernozhukov,et al. Conditional Quantile Processes Based on Series or Many Regressors , 2011, Journal of Econometrics.
[29] Quantile Regression under Misspecification , 2004 .
[30] Guang Cheng,et al. Joint asymptotics for semi-nonparametric regression models with partially linear structure , 2013, 1311.2628.
[31] R. Koenker,et al. Regression Quantiles , 2007 .
[32] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[33] V. Chernozhukov,et al. QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.
[34] Han Liu,et al. A PARTIALLY LINEAR FRAMEWORK FOR MASSIVE HETEROGENEOUS DATA. , 2014, Annals of statistics.