Quantile Processes for Semi and Nonparametric Regression

A collection of quantile curves provides a complete picture of conditional distributions. Properly centered and scaled versions of estimated curves at various quantile levels give rise to the so-called quantile regression process (QRP). In this paper, we establish weak convergence of QRP in a general series approximation framework, which includes linear models with increasing dimension, nonparametric models and partial linear models. An interesting consequence is obtained in the last class of models, where parametric and non-parametric estimators are shown to be asymptotically independent. Applications of our general process convergence results include the construction of non-crossing quantile curves and the estimation of conditional distribution functions. As a result of independent interest, we obtain a series of Bahadur representations with exponential bounds for tail probabilities of all remainder terms. Bounds of this kind are potentially useful in analyzing statistical inference procedures under divide-and-conquer setup.

[1]  R. Koenker Quantile Regression: Fundamentals of Quantile Regression , 2005 .

[2]  Zhongjun Qu,et al.  Nonparametric estimation and inference on conditional quantile processes , 2015 .

[3]  Holger Dette,et al.  Non‐crossing non‐parametric estimates of quantile curves , 2008 .

[4]  P. Shi,et al.  Convergence rate of b-spline estimators of nonparametric conditional quantile functions ∗ , 1994 .

[5]  L. Briollais,et al.  Application of quantile regression to recent genetic and -omic studies , 2014, Human Genetics.

[6]  Jianhua Z. Huang Local asymptotics for polynomial spline regression , 2003 .

[7]  Roger Koenker,et al.  Inference on the Quantile Regression Process , 2000 .

[8]  V. Koltchinskii Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0083.

[9]  William F. Moss,et al.  Decay rates for inverses of band matrices , 1984 .

[10]  Simo Puntanen,et al.  Schur complements in statistics and probability , 2005 .

[11]  Xuming He,et al.  Bivariate Tensor-Product B-Splines in a Partly Linear Model , 1996 .

[12]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[13]  B. Cade,et al.  A gentle introduction to quantile regression for ecologists , 2003 .

[14]  Roger Koenker,et al.  An empirical quantile function for linear models with iid errors , 1981 .

[15]  K. Knight Asymptotics of the regression quantile basic solution under misspecification , 2008 .

[16]  Miguel A. Delgado,et al.  Conditional Stochastic Dominance Testing , 2013 .

[17]  Victor Chernozhukov,et al.  Quantile Regression Under Misspecification, with an Application to the U.S. Wage Structure , 2004 .

[18]  Xiaotong Shen,et al.  Local asymptotics for regression splines and confidence regions , 1998 .

[19]  Holger Dette,et al.  Quantile Spectral Processes: Asymptotic Analysis and Inference , 2014, 1401.8104.

[20]  P. Massart,et al.  About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .

[21]  Young K. Lee,et al.  Efficient semiparametric estimation in generalized partially linear additive models , 2010 .

[22]  Xiaohong Chen Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models , 2007 .

[23]  Jianhua Z. Huang,et al.  Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data , 2014 .

[24]  Stephen G. Donald,et al.  Statistical Inference with Generalized Gini Indices of Inequality, Poverty, and Welfare , 2009 .

[25]  Guang Cheng,et al.  Distributed inference for quantile regression processes , 2017, The Annals of Statistics.

[26]  L. Fernholz von Mises Calculus For Statistical Functionals , 1983 .

[27]  So K Kb EFFICIENT SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR QUANTILE REGRESSION MODEL , 2003 .

[28]  Victor Chernozhukov,et al.  Conditional Quantile Processes Based on Series or Many Regressors , 2011, Journal of Econometrics.

[29]  Quantile Regression under Misspecification , 2004 .

[30]  Guang Cheng,et al.  Joint asymptotics for semi-nonparametric regression models with partially linear structure , 2013, 1311.2628.

[31]  R. Koenker,et al.  Regression Quantiles , 2007 .

[32]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[33]  V. Chernozhukov,et al.  QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.

[34]  Han Liu,et al.  A PARTIALLY LINEAR FRAMEWORK FOR MASSIVE HETEROGENEOUS DATA. , 2014, Annals of statistics.