A Local Parameterization of Orthogonal and Semi-Orthogonal Matrices with Applications

This article describes a local parameterization of orthogonal and semi-orthogonal matrices. The parameterization leads to a unified approach for obtaining the asymptotic joint distributions of estimators of singular-values and -vectors, and of eigen-values and -vectors. The singular- or eigen-values can have arbitrary multiplicities. The approach is illustrated on principal components analyzes, canonical correlation analysis, inter-battery factory analysis, and reduced-rank regression.

[1]  M. Browne Generalized Least Squares Estimators in the Analysis of Covariance Structures. , 1973 .

[2]  C. Waternaux Asymptotic distribution of the sample roots for a nonnormal population , 1976 .

[3]  R. Muirhead,et al.  Asymptotic distributions in canonical correlation analysis and other multivariate procedures for nonnormal populations , 1980 .

[4]  J. R. Schott A Test for a Specific Principal Component of a Correlation Matrix , 1991 .

[5]  Stephen G. Donald,et al.  On the asymptotic properties of ldu-based tests of the rank of a matrix , 1996 .

[6]  J. H. Steiger,et al.  A historical note on the asymptotic distribution of correlations , 1983 .

[7]  Ian T. Jolliffe,et al.  Rotation of ill-defined principal components , 1989 .

[8]  David E. Tyler Asymptotic Inference for Eigenvectors , 1981 .

[9]  Alexander Shapiro,et al.  The asymptotic covariance matrix of sample correlation coefficients under general conditions , 1986 .

[10]  James H. Steiger,et al.  The asymptotic distribution of elements of a correlation matrix: Theory and application , 1982 .

[11]  P. R. Krishnaiah Multivariate Analysis IV , 1977 .

[12]  Takashi Seo,et al.  The Effects of Nonnormality of Tests for Dimensionality in Canonical Correlation and MANOVA Models , 1995 .

[13]  M. Browne Asymptotically distribution-free methods for the analysis of covariance structures. , 1984, The British journal of mathematical and statistical psychology.

[14]  Ke-Hai Yuan,et al.  Mean and Covariance Structure Analysis: Theoretical and Practical Improvements , 1997 .

[15]  Shelby J. Haberman,et al.  The Analysis of Nonadditivity in Two-Way Analysis of Variance , 1990 .

[16]  L. Zhao,et al.  Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. , 1991, Biometrics.

[17]  W. Fulks Advanced Calculus: An Introduction to Analysis , 1969 .

[18]  Jerzy Neyman,et al.  Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability : held at the Statistical Laboratory, University of California, December, 1954, July and August, 1955 , 1958 .

[19]  M. L. Eaton,et al.  The asymptotic distribution of singular values with applications to canonical correlations and correspondence analysis , 1994 .

[20]  T. W. Anderson ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS , 1963 .

[21]  J. H. Steiger,et al.  The comparison of interdependent correlations between optimal linear composites , 1984 .

[22]  M. A. Girshick On the Sampling Theory of Roots of Determinantal Equations , 1939 .

[23]  A. W. Davis ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS: NON-NORMAL CASE1 , 1977 .

[24]  Joël Chadoeuf,et al.  Asymptotic variances for the multiplicative interaction model , 1991 .

[25]  Alexander Shapiro A note on the consistency of estimators in the analysis of moment structures , 1984 .

[26]  James R. Schott Asymptotics of eigenprojections of correlation matrices with some applications in principal components analysis , 1997 .

[27]  G. Chamberlain Multivariate regression models for panel data , 1982 .

[28]  George A. Anderson,et al.  An Asymptotic Expansion for the Distribution of the Latent Roots of the Estimated Covariance Matrix , 1965 .

[29]  H. Neudecker,et al.  Asymptotics of Eigenvalues and Unit-Length Eigenvectors of Sample Variance and Correlation Matrices , 1993 .

[30]  Yasunori Fujikoshi,et al.  Asymptotic expansions for the distributions of the sample roots under nonnormality , 1980 .

[31]  Herman Rubin,et al.  Statistical Inference in Factor Analysis , 1956 .

[32]  Gene H. Golub,et al.  Matrix computations , 1983 .

[33]  M. Tso Reduced‐Rank Regression and Canonical Analysis , 1981 .

[34]  I. Jolliffe Rotation of principal components: choice of normalization constraints , 1995 .

[35]  A. Izenman Reduced-rank regression for the multivariate linear model , 1975 .

[36]  T. W. Anderson Estimating Linear Restrictions on Regression Coefficients for Multivariate Normal Distributions , 1951 .

[37]  H. Neudecker,et al.  Unbiased estimation of fourth-order matrix moments , 1992 .

[38]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[39]  A. Lewbel,et al.  Testing the Rank and Definiteness of Estimated Matrices with Applications to Factor, State-Space and ARMA Models , 1992 .

[40]  Petre Stoica,et al.  Maximum likelihood parameter and rank estimation in reduced-rank multivariate linear regressions , 1996, IEEE Trans. Signal Process..

[41]  Y Kano,et al.  Can test statistics in covariance structure analysis be trusted? , 1992, Psychological bulletin.

[42]  E. C. Macrae Matrix Derivatives with an Application to an Adaptive Linear Decision Problem , 1974 .

[43]  Gregory C. Reinsel,et al.  Reduced rank models for multiple time series , 1986 .

[44]  L. Tucker An inter-battery method of factor analysis , 1958 .

[45]  Yasunori Fujikoshi,et al.  The likelihood ratio tests for the dimensionality of regression coefficients , 1974 .

[46]  J. Magnus,et al.  The Commutation Matrix: Some Properties and Applications , 1979 .

[47]  Thomas S. Ferguson,et al.  A Method of Generating Best Asymptotically Normal Estimates with Application to the Estimation of Bacterial Densities , 1958 .

[48]  A. M. Wesselman,et al.  THE ASYMPTOTIC VARIANCE MATRIX OF THE SAMPLE CORRELATION MATRIX , 1990 .

[49]  D. Lawley TESTS OF SIGNIFICANCE FOR THE LATENT ROOTS OF COVARIANCE AND CORRELATION MATRICES , 1956 .

[50]  B. Muthén,et al.  A comparison of some methodologies for the factor analysis of non‐normal Likert variables: A note on the size of the model , 1992 .

[51]  R. Jennrich,et al.  Quartic rotation criteria and algorithms , 1988 .

[52]  I. Good,et al.  The Parameterization of Orthogonal Matrices: A Review Mainly for Statisticians. , 1987 .