Optimal Adaptive Waveform Design for Cognitive MIMO Radar

This paper addresses the problem of adaptive waveform design for estimation of parameters of linear systems. This problem arises in several applications such as radar, sonar, or tomography. In the proposed technique, the transmit/input signal waveform is optimally determined at each step based on the observations in the previous steps. The waveform is determined to minimize the Bayesian Cramér-Rao bound (BCRB) or the Reuven-Messer bound (RMB) for estimation of the unknown system parameters at each step. The algorithms are tested for spatial transmit waveform design in multiple-input multiple-output radar target angle estimation at very low signal-to-noise ratio. The proposed techniques allow to automatically focusing the transmit beam toward the target direction. The simulations show that the proposed adaptive waveform design methods achieve significantly higher rate of performance improvement as a function of the pulse index, compared to other signal transmission methods, in terms of estimation accuracy.

[1]  Robin J. Evans,et al.  Optimal waveform selection for tracking systems , 1994, IEEE Trans. Inf. Theory.

[2]  S. Haykin,et al.  Cognitive radar: a way of the future , 2006, IEEE Signal Processing Magazine.

[3]  P. P. Vaidyanathan,et al.  MIMO Radar Waveform Optimization With Prior Information of the Extended Target and Clutter , 2009, IEEE Transactions on Signal Processing.

[4]  Barbara F. La Scala,et al.  Multi step ahead beam and waveform scheduling for tracking of manoeuvering targets in clutter , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[5]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[6]  Pramod K. Varshney,et al.  Conditional Posterior Cramér–Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation , 2012, IEEE Transactions on Signal Processing.

[7]  Jian Li,et al.  Range Compression and Waveform Optimization for MIMO Radar: A CramÉr–Rao Bound Based Study , 2007, IEEE Transactions on Signal Processing.

[8]  J. R. Guerci,et al.  Cognitive radar: A knowledge-aided fully adaptive approach , 2010, 2010 IEEE Radar Conference.

[9]  Arye Nehorai,et al.  OFDM MIMO Radar With Mutual-Information Waveform Design for Low-Grazing Angle Tracking , 2010, IEEE Transactions on Signal Processing.

[10]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[11]  Wasim Huleihel,et al.  Optimal sequential waveform design for cognitive radar , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[12]  B. Friedlander,et al.  Waveform Design for MIMO Radars , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[13]  A. Nehorai,et al.  Information Theoretic Adaptive Radar Waveform Design for Multiple Extended Targets , 2007, IEEE Journal of Selected Topics in Signal Processing.

[14]  T. Naghibi,et al.  Optimal and robust waveform design for MIMO radars in the presence of clutter , 2010, Signal Process..

[15]  Nicholas O'Donoughue,et al.  Time Reversal in Multiple-Input Multiple-Output Radar , 2010, IEEE Journal of Selected Topics in Signal Processing.

[16]  Jian Li,et al.  Signal Synthesis and Receiver Design for MIMO Radar Imaging , 2008, IEEE Transactions on Signal Processing.

[17]  Alexander M. Haimovich,et al.  Spatial Diversity in Radars—Models and Detection Performance , 2006, IEEE Transactions on Signal Processing.

[18]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[19]  D. Morrell,et al.  Waveform-Agile Sensing for Tracking Multiple Targets in Clutter , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[20]  D. Fuhrmann,et al.  Transmit beamforming for MIMO radar systems using signal cross-correlation , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[21]  Fulvio Gini,et al.  Waveform design and diversity for advanced radar systems , 2012 .

[22]  Ehud Weinstein,et al.  A lower bound on the mean-square error in random parameter estimation , 1985, IEEE Trans. Inf. Theory.

[23]  A. De Maio,et al.  Design principles of MIMO radar detectors , 2006, 2006 International Waveform Diversity & Design Conference.

[24]  Hagit Messer,et al.  A Barankin-type lower bound on the estimation error of a hybrid parameter vector , 1997, IEEE Trans. Inf. Theory.

[25]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[26]  Rick S. Blum,et al.  MIMO radar waveform design based on mutual information and minimum mean-square error estimation , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[27]  S. Haykin,et al.  Optimal waveform design for cognitive radar , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[28]  Jian Li,et al.  On Probing Signal Design For MIMO Radar , 2006, IEEE Transactions on Signal Processing.

[29]  Alessio Balleri,et al.  Waveform Design and Diversity for Advanced Radar Systems , 2012 .

[30]  Rick S. Blum,et al.  Minimax Robust MIMO Radar Waveform Design , 2007, IEEE Journal of Selected Topics in Signal Processing.

[31]  Mark R. Bell Information theory and radar waveform design , 1993, IEEE Trans. Inf. Theory.

[32]  R.J. Evans,et al.  Waveform selective probabilistic data association , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[33]  M.A. Neifeld,et al.  Adaptive Waveform Design and Sequential Hypothesis Testing for Target Recognition With Active Sensors , 2007, IEEE Journal of Selected Topics in Signal Processing.

[34]  J. Tabrikian,et al.  Target Detection and Localization Using MIMO Radars and Sonars , 2006, IEEE Transactions on Signal Processing.

[35]  Jeffrey L. Krolik,et al.  Barankin bounds for source localization in an uncertain ocean environment , 1999, IEEE Trans. Signal Process..

[36]  Joseph Tabrikian,et al.  Spatially coded signal model for active arrays , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[37]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[38]  Hualiang Li,et al.  Complex-valued adaptive signal processing using wirtinger calculus and its application to independent component analysis , 2008 .

[39]  J. Tabrikian,et al.  Barankin Bounds for Target Localization by MIMO Radars , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[40]  Yingning Peng,et al.  MIMO Radar Waveform Design in Colored Noise Based on Information Theory , 2010, IEEE Transactions on Signal Processing.

[41]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[42]  Tong Zhao,et al.  Adaptive Polarized Waveform Design for Target Tracking Based on Sequential Bayesian Inference , 2008, IEEE Transactions on Signal Processing.

[43]  A. De Maio,et al.  Design Principles of MIMO Radar Detectors , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[44]  D.W. Bliss,et al.  Waveform Correlation and Optimization Issues for MIMO Radar , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[45]  A. Papandreou-Suppappola,et al.  Waveform-agile sensing for tracking , 2009, IEEE Signal Processing Magazine.