Thermal and electrical conductivity of magnetic refrigerant RT Laves compounds (R: rare earth; T: Al, Ni) for magnetic refrigerator application

[1]  Takafumi D. Yamamoto,et al.  Magnetocaloric particles of the Laves phase compound HoAl2 prepared by electrode induction melting gas atomization , 2021, Journal of Magnetism and Magnetic Materials.

[2]  K. Kamiya,et al.  Thermal expansion and thermal conductivity of RT 2 (R: Gd, Dy, Er; T: Al, Ni) intermetallic compounds for magnetic refrigerator , 2021 .

[3]  S. Rashidi,et al.  Magnetocaloric Materials , 2021, Reference Module in Materials Science and Materials Engineering.

[4]  Muhammad Aziz,et al.  Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review , 2019, International Journal of Hydrogen Energy.

[5]  Victorino Franco,et al.  Magnetocaloric effect: From materials research to refrigeration devices , 2018 .

[6]  J. Lyubina Magnetocaloric materials for energy efficient cooling , 2017 .

[7]  A. Poredos,et al.  Magnetocaloric Energy Conversion , 2015 .

[8]  Koichi Matsumoto,et al.  Magnetocaloric materials and the optimization of cooling power density , 2014 .

[9]  T. Chatterji,et al.  Magnetic, magnetocaloric and magnetoresistive properties of cubic Laves phase HoAl2 single crystal , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Y. Zhu,et al.  Magnetocaloric effect of RM2 (R = rare earth, M = Ni, Al) intermetallic compounds made by centrifugal atomization process for magnetic refrigerator , 2012 .

[11]  Kôichi Matsumoto,et al.  Magnetocaloric effect of (ErxR1−x)Co2 (R = Ho, Dy) for magnetic refrigeration between 20 and 80 K , 2011 .

[12]  A. A. Coelho,et al.  Investigation on the magnetocaloric effect in (Gd,Pr)Al2 solid solutions , 2011 .

[13]  K. Kamiya,et al.  Magnetic refrigerator for hydrogen liquefaction , 2009 .

[14]  K. Kamiya,et al.  Development of a Magnetic Refirgerator for Hydrogen Liquefaction , 2008 .

[15]  S. Gama,et al.  Magnetoresistivity as a probe to the field-induced change of magnetic entropy inRAl2compounds(R=Pr,Nd,Tb,Dy,Ho,Er) , 2006 .

[16]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[17]  N. Duc,et al.  Metamagnetism, giant magnetoresistance and magnetocaloric effects in RCo2-based compounds in the vicinity of the Curie temperature , 2002 .

[18]  K. Ohira,et al.  Experimental Study on Magnetic Refrigeration for the Liquefaction of Hydrogen , 2000 .

[19]  C. E. Reid,et al.  Eddy Current Power Dissipation in Rare Earth Packed Particle Bed Regenerators for AMRR Applications , 1998 .

[20]  S. A. Sherif,et al.  Liquid hydrogen: Potential, problems, and a proposed research program , 1997 .

[21]  T. Hashimoto,et al.  Thermal conductivities of magnetic intermetallic compounds for cryogenic regenerator , 1991 .

[22]  C. Zimm,et al.  Magnetothermal conductivity of ErAl2 for cryogenic applications , 1988 .

[23]  E. Bauer,et al.  Transport properties in rare earth intermetallics , 1987 .

[24]  T. Kurihara,et al.  Investigations on the Possibility of the RAl 2 System as a Refrigerant in an Ericsson Type Magnetic Refrigerator , 1986 .

[25]  G. Adam,et al.  Thermal conductivity of REAl2 compounds (RE=rare earth) , 1986 .

[26]  M. Zuckermann,et al.  Transport properties of rare earth intermetallic compounds (electrical resistivity, thermopower and thermal conductivity)☆☆☆ , 1982 .

[27]  F. Parker,et al.  Resistivity and magnetization in disordered crystalline compound series R ( Al x M 1 − x ) 2 ( R = rare earth ; M = C u , C o , F e ) , 1981 .

[28]  M. Christen Anisotropy of the electrical resistivity in PrAl2 and DyAl2 , 1980 .

[29]  W. Giauque PARAMAGNETISM AND THE THIRD LAW OF THERMO-DYNAMICS. INTERPRETATION OF THE LOW-TEMPERATURE MAGNETIC SUSCEPTIBILITY OF GADOLINIUM SULFATE , 1927 .

[30]  P. Debye Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur , 1926 .