Phytoplankton influences on tropical climate

We study the effect of ocean biology on tropical surface temperatures using a simplified coupled atmosphere‐ocean model. It is shown that moderate phytoplankton blooms, occuring e.g. during La Niña conditions, lead to a vertical redistribution of heat in the surface layers and an associated surface layer warming of about 20 W/m2. The positive air‐sea coupling in the eastern equatorial Pacific plays an important role in amplyfying this signal, thereby damping La Niña conditions. This temperature‐regulating feedback acts as a biological thermostat within the surface ocean and influences also the amplitude and asymmetry of the El Niño‐Southern Oscillation.

[1]  Antonio J. Busalacchi,et al.  Effects of Penetrative Radiation on the Upper Tropical Ocean Circulation , 2002 .

[2]  Robert Frouin,et al.  Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model , 2001 .

[3]  Bin Wang,et al.  A coupled modeling study of the seasonal cycle of the Pacific cold tongue , 2001 .

[4]  M. Mcphaden,et al.  The Surface-Layer Heat Balance in the Equatorial Pacific Ocean. Part II: Interannual Variability* , 2000 .

[5]  Feldman,et al.  Biological and chemical response of the equatorial pacific ocean to the 1997-98 El Nino , 1999, Science.

[6]  M. Mcphaden,et al.  The Surface-Layer Heat Balance in the Equatorial Pacific Ocean. Part I: Mean Seasonal Cycle* , 1999 .

[7]  A. Timmermann,et al.  Increased El Niño frequency in a climate model forced by future greenhouse warming , 1999, Nature.

[8]  David B. Stephenson,et al.  The “normality” of El Niño , 1999 .

[9]  Francisco P. Chavez,et al.  Biological‐physical coupling in the Central Equatorial Pacific during the onset of the 1997–98 El Niño , 1998 .

[10]  Mojib Latif,et al.  A review of the predictability and prediction of ENSO , 1998 .

[11]  M. Kassas Currents of change: El Niño's impact on climate and society , 1998 .

[12]  A. Ravelo,et al.  Tropical Pacific Ocean thermocline depth reconstructions for the Last Glacial Maximum , 1997 .

[13]  Bruce W. Frost,et al.  Phytoplankton bloom on iron rations , 1996, Nature.

[14]  C. L. Leonard,et al.  Assessment of interannual variation (1979-1986) in pigment concentrations in the tropical Pacific using the CZCS , 1996 .

[15]  K. Johnson,et al.  Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean , 1996, Nature.

[16]  F. Jin A Simple Model for the Pacific Cold Tongue and ENSO * , 1996 .

[17]  Bin Wang,et al.  An Intermediate Model of the Tropical Pacific Ocean , 1995 .

[18]  F. Morel,et al.  The equatorial Pacific Ocean: Grazer-controlled phytoplankton populations in an iron-limited ecosystem1 , 1994 .

[19]  A. Ehrenberg,et al.  Predictability and prediction , 1993 .

[20]  Trevor Platt,et al.  Biological control of surface temperature in the Arabian Sea , 1991, Nature.

[21]  Gene C. Feldman,et al.  Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean , 1990, Nature.

[22]  A. Morel Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters) , 1988 .

[23]  N. Pisias,et al.  Late Pleistocene Paleoclimatology of the Central Equatorial Pacific: A Quantitative Record of Eolian and Carbonate Deposition , 1987, Quaternary Research.

[24]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[25]  K. Hanawa,et al.  Critical Examination of Various Estimation Methods of Long-Term Mean Air-Sea Heat and Momentum Transfer , 1985 .

[26]  Mark A. Cane,et al.  On Equatorial Dynamics, Mixed Layer Physics and Sea Surface Temperature , 1983 .

[27]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .