Amobee at SemEval-2017 Task 4: Deep Learning System for Sentiment Detection on Twitter

This paper describes the Amobee sentiment analysis system, adapted to compete in SemEval 2017 task 4. The system consists of two parts: a supervised training of RNN models based on a Twitter sentiment treebank, and the use of feedforward NN, Naive Bayes and logistic regression classifiers to produce predictions for the different sub-tasks. The algorithm reached the 3rd place on the 5-label classification task (sub-task C).

[1]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[2]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[3]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[4]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[5]  Rohini K. Srihari,et al.  Using Verbs and Adjectives to Automatically Classify Blog Sentiment , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[6]  Rabab Kreidieh Ward,et al.  Semantic Modelling with Long-Short-Term Memory for Information Retrieval , 2014, ArXiv.

[7]  Preslav Nakov,et al.  SemEval-2016 Task 4: Sentiment Analysis in Twitter , 2016, *SEMEVAL.

[8]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[9]  Rabab Kreidieh Ward,et al.  Deep Sentence Embedding Using Long Short-Term Memory Networks: Analysis and Application to Information Retrieval , 2015, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[10]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[11]  Diego Reforgiato Recupero,et al.  Sentiment Analysis: Adjectives and Adverbs are Better than Adjectives Alone , 2007, ICWSM.

[12]  Christopher Potts,et al.  The Life and Death of Discourse Entities: Identifying Singleton Mentions , 2013, NAACL.

[13]  Heeyoung Lee,et al.  Stanford’s Multi-Pass Sieve Coreference Resolution System at the CoNLL-2011 Shared Task , 2011, CoNLL Shared Task.