A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model
暂无分享,去创建一个
[1] S. Strogatz. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .
[2] G. Shilov,et al. Spaces of Fundamental and Generalized Functions , 2013 .
[3] Krzysztof Maurin,et al. General eigenfunction expansions and unitary representations of topological groups , 1968 .
[4] P. Tass,et al. Mechanism of desynchronization in the finite-dimensional Kuramoto model. , 2004, Physical review letters.
[5] S. Strogatz,et al. Identical phase oscillators with global sinusoidal coupling evolve by Mobius group action. , 2009, Chaos.
[6] S. Semmes. Topological Vector Spaces , 2003 .
[7] Yoshiki Kuramoto,et al. Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.
[8] Monika Sharma,et al. Chemical oscillations , 2006 .
[9] J. Crawford,et al. Scaling and singularities in the entrainment of globally coupled oscillators. , 1995, Physical review letters.
[10] W. Gross. Eine ganze Funktion, für die jede komplexe Zahl Konvergenzwert ist , 1918 .
[11] J. Acebrón,et al. Asymptotic description of transients and synchronized states of globally coupled oscillators , 1998 .
[12] S. Strogatz,et al. Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping. , 1992, Physical review letters.
[13] J. LaMattina,et al. John C , 2004 .
[14] Peter W. Bates,et al. Invariant Manifolds for Semilinear Partial Differential Equations , 1989 .
[15] Yoshiki Kuramoto,et al. Self-entrainment of a population of coupled non-linear oscillators , 1975 .
[16] Peter A. Tass,et al. Chaotic Attractor in the Kuramoto Model , 2005, Int. J. Bifurc. Chaos.
[17] Stefan Rolewicz,et al. On a problem of moments , 1968 .
[18] J. Tamarkin. Review: E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals , 1938 .
[19] H. Hochstadt. Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable; 3rd ed. (Lars V. Ahlfors) , 1980 .
[20] J. Hale,et al. Invariant Foliations for C1Semigroups in Banach Spaces , 1997 .
[21] Amiel Feinstein,et al. Applications of harmonic analysis , 1964 .
[22] H. Komatsu. Projective and injective limits of weakly compact sequences of locally convex spaces , 1967 .
[23] Jürgen Kurths,et al. Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.
[24] Tibor Krisztin. Invariance and Noninvariance of Center Manifolds of Time-t Maps with Respect to the Semiflow , 2005, SIAM J. Math. Anal..
[25] F. Trèves. Topological vector spaces, distributions and kernels , 1967 .
[26] Hayato Chiba,et al. Center manifold reduction for large populations of globally coupled phase oscillators. , 2011, Chaos.
[27] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[28] Hayato Chiba,et al. Stability of an [N / 2]-dimensional invariant torus in the Kuramoto model at small coupling , 2009, 0903.4840.
[29] 張 廣厚. Theory of entire and meromorphic functions : deficient and asymptotic values and singular directions , 1993 .
[30] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[31] Walter Bergweiler,et al. On the singularities of the inverse to a meromorphic function of finite order , 1995 .
[32] A. Offord. Introduction to the Theory of Fourier Integrals , 1938, Nature.
[33] Neil J. Balmforth,et al. A shocking display of synchrony , 2000 .
[34] L. L. Bonilla,et al. Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions , 1998 .
[35] Jürgen Kurths,et al. Synchronization: Phase locking and frequency entrainment , 2001 .
[36] J. Crawford,et al. Amplitude expansions for instabilities in populations of globally-coupled oscillators , 1993, patt-sol/9310005.
[37] Hayato Chiba. Continuous limit and the moments system for the globally coupled phase oscillators , 2010, 1003.5024.
[38] E. Ott,et al. Long time evolution of phase oscillator systems. , 2009, Chaos.
[39] S. Strogatz,et al. Stability of incoherence in a population of coupled oscillators , 1991 .
[40] J. Crawford,et al. Synchronization of globally coupled phase oscillators: singularities and scaling for general couplings , 1997 .
[41] Renato Spigler,et al. Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators , 1992 .
[42] S. Strogatz,et al. Amplitude death in an array of limit-cycle oscillators , 1990 .
[43] André Vanderbauwhede,et al. Center Manifold Theory in Infinite Dimensions , 1992 .
[44] Tosio Kato. Perturbation theory for linear operators , 1966 .
[45] E. Ott,et al. Low dimensional behavior of large systems of globally coupled oscillators. , 2008, Chaos.
[46] H. Daido. Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: bifurcation of the order function , 1996 .
[47] R. Spigler,et al. The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .
[48] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .
[49] E. Ott,et al. Exact results for the Kuramoto model with a bimodal frequency distribution. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[50] D. J. Newman,et al. A simple proof of Wiener’s 1/ theorem , 1975 .
[51] S. Lang. Complex Analysis , 1977 .
[52] Steven H. Strogatz,et al. The Spectrum of the Partially Locked State for the Kuramoto Model , 2007, J. Nonlinear Sci..