THE SUBMILLIMETER AND MILLIMETER EXCESS OF THE SMALL MAGELLANIC CLOUD: MAGNETIC DIPOLE EMISSION FROM MAGNETIC NANOPARTICLES?

The Small Magellanic Cloud (SMC) has surprisingly strong submillimeter- and millimeter-wavelength emission that is inconsistent with standard dust models, including those with emission from spinning dust. Here, we show that the emission from the SMC may be understood if the interstellar dust mixture includes magnetic nanoparticles, emitting magnetic dipole radiation resulting from thermal fluctuations in the magnetization. The magnetic grains can be metallic iron, magnetite Fe3O4, or maghemite γ-Fe2O3. The required mass of iron is consistent with elemental abundance constraints. The magnetic dipole emission is predicted to be polarized orthogonally to the normal electric dipole radiation if the nanoparticles are inclusions in larger grains. We speculate that other low-metallicity galaxies may also have a large fraction of the interstellar Fe in magnetic materials.

[1]  L. Staveley-Smith,et al.  ERRATUM: “A RADIO AND OPTICAL POLARIZATION STUDY OF THE MAGNETIC FIELD IN THE SMALL MAGELLANIC CLOUD” (2008, ApJ, 688, 1029) , 2012 .

[2]  O. Krause,et al.  Dust in historical Galactic Type Ia supernova remnants with Herschel★ , 2011, Monthly Notices of the Royal Astronomical Society.

[3]  J. Simon,et al.  THE SPITZER SPECTROSCOPIC SURVEY OF THE SMALL MAGELLANIC CLOUD (S4MC): PROBING THE PHYSICAL STATE OF POLYCYCLIC AROMATIC HYDROCARBONS IN A LOW-METALLICITY ENVIRONMENT , 2011, 1109.0999.

[4]  M. Juvela,et al.  Modelling the spinning dust emission from dense interstellar clouds , 2011, 1108.4563.

[5]  D. Paradis,et al.  Far-infrared to millimeter astrophysical dust emission II. Comparison of the two-level systems (TLS) model with astronomical data , 2011, 1107.5179.

[6]  Linda J. Smith,et al.  SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). I. OVERVIEW , 2011, 1107.4313.

[7]  M. Sauvage,et al.  Herschel Detects a Massive Dust Reservoir in Supernova 1987A , 2011, Science.

[8]  A. Lazarian,et al.  SPINNING DUST EMISSION: EFFECTS OF IRREGULAR GRAIN SHAPE, TRANSIENT HEATING, AND COMPARISON WITH WILKINSON MICROWAVE ANISOTROPY PROBE RESULTS , 2011, The Astrophysical Journal.

[9]  A. Dupree,et al.  Spitzer spectra of evolved stars in ω Centauri and their low-metallicity dust production , 2011, 1104.5155.

[10]  M. Sauvage,et al.  Probing the dust properties of galaxies up to submillimetre wavelengths. II. Dust-to-gas mass ratio trends with metallicity and the submm excess in dwarf galaxies , 2011, 1104.0827.

[11]  B. Draine Physics of the Interstellar and Intergalactic Medium , 2011 .

[12]  A. Zijlstra,et al.  DUST PRODUCTION AND MASS LOSS IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE , 2011, 1101.1096.

[13]  J. L. Bourlot,et al.  The global dust SED: tracing the nature and evolution of dust with DustEM , 2010, 1010.2769.

[14]  W. Reach,et al.  Submillimeter to centimeter excess emission from the Magellanic Clouds - I. Global spectral energy distribution , 2010 .

[15]  P. Bernardis,et al.  Variations of the spectral index of dust emissivity from Hi-GAL observations of the Galactic plane , 2010, 1009.2779.

[16]  Guilaine Lagache,et al.  Submillimeter to centimeter excess emission from the Magellanic Clouds - II. On the nature of the excess , 2010, 1008.2875.

[17]  J. Bernard-Salas,et al.  RUSTY OLD STARS: A SOURCE OF THE MISSING INTERSTELLAR IRON? , 2010, 1005.3489.

[18]  G. J. Bendo,et al.  The Herschel Virgo Cluster Survey - V. Star-forming dwarf galaxies – dust in metal-poor environments , 2010, 1005.3058.

[19]  D. L. Clements,et al.  Herschel photometric observations of the low metallicity dwarf galaxy NGC 1705 , 2010, 1005.2091.

[20]  C. Hirata,et al.  Spinning dust emission: the effect of rotation around a non-principal axis , 2010, 1003.4732.

[21]  A. Bolatto,et al.  THE SPITZER SURVEY OF THE SMALL MAGELLANIC CLOUD (S3MC): INSIGHTS INTO THE LIFE CYCLE OF POLYCYCLIC AROMATIC HYDROCARBONS , 2010, 1003.4516.

[22]  A. Lazarian,et al.  IMPROVING THE MODEL OF EMISSION FROM SPINNING DUST: EFFECTS OF GRAIN WOBBLING AND TRANSIENT SPIN-UP , 2010, The Astrophysical Journal.

[23]  M. Sauvage,et al.  Probing the dust properties of galaxies up to submillimetre wavelengths. I. The spectral energy dist , 2009, 0910.0043.

[24]  Joana M. Oliveira,et al.  DUST PRODUCTION AND MASS LOSS IN THE GALACTIC GLOBULAR CLUSTER NGC 362 , 2009, 0909.5154.

[25]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[26]  Edward B. Jenkins,et al.  A UNIFIED REPRESENTATION OF GAS-PHASE ELEMENT DEPLETIONS IN THE INTERSTELLAR MEDIUM , 2009, 0905.3173.

[27]  C. Dukes,et al.  Irradiation of olivine by 4 keV He+: Simulation of space weathering by the solar wind , 2009 .

[28]  A. Goodman,et al.  THE EFFECT OF LINE-OF-SIGHT TEMPERATURE VARIATION AND NOISE ON DUST CONTINUUM OBSERVATIONS , 2009, 0902.3477.

[29]  A. Goodman,et al.  THE EFFECT OF NOISE ON THE DUST TEMPERATURE–SPECTRAL INDEX CORRELATION , 2009, 0902.0636.

[30]  C. Dickinson,et al.  A refined model for spinning dust radiation , 2008, 0812.2904.

[31]  Bruce T. Draine,et al.  POLARIZED FAR-INFRARED AND SUBMILLIMETER EMISSION FROM INTERSTELLAR DUST , 2008, 0809.2094.

[32]  J. Dickey,et al.  A Radio and Optical Polarization Study of the Magnetic Field in the Small Magellanic Cloud , 2008, 0807.1532.

[33]  Wolfgang Gieren,et al.  THE ARAUCARIA PROJECT: THE DISTANCE TO THE SMALL MAGELLANIC CLOUD FROM NEAR-INFRARED PHOTOMETRY OF RR LYRAE VARIABLES , 2008, 0910.3885.

[34]  J. Rho,et al.  Freshly Formed Dust in the Cassiopeia A Supernova Remnant as Revealed by the Spitzer Space Telescope , 2007, 0709.2880.

[35]  D. Calzetti,et al.  Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample , 2007, astro-ph/0703213.

[36]  D. Paradis,et al.  Far-infrared to millimeter astrophysical dust emission. I. A model based on physical properties of a , 2007, astro-ph/0701226.

[37]  D. Calzetti,et al.  The Mid-Infrared Spectrum of Star-forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission , 2006, astro-ph/0610913.

[38]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[39]  A. Bolatto,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SPITZER SURVEY OF THE SMALL MAGELLANIC CLOUD: FIR EMISSION AND COLD GAS IN THE SMC , 2006 .

[40]  J. Fabbri,et al.  Massive-Star Supernovae as Major Dust Factories , 2006, Science.

[41]  J. Bernard,et al.  Temperature Dependence of the Submillimeter Absorption Coefficient of Amorphous Silicate Grains , 2005 .

[42]  A. Jones,et al.  ISM properties in low-metallicity environments. III. The dust spectral energy distributions of II Zw 40, He 2-10 and NGC 1140 , 2005, astro-ph/0501632.

[43]  G. Lagache,et al.  IRIS: A New Generation of IRAS Maps , 2004, astro-ph/0412216.

[44]  T. Gilbert A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.

[45]  P. Dufton,et al.  Chemical compositions of four B-type supergiants in the SMC wing , 2004, astro-ph/0410318.

[46]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[47]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[48]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[49]  Richard G. Arendt,et al.  Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints , 2003, astro-ph/0312641.

[50]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[51]  S. Meyer,et al.  The Spectrum of Integrated Millimeter Flux of the Magellanic Clouds and 30 Doradus from TopHat and DIRBE Data , 2003, astro-ph/0306425.

[52]  S. C. Madden,et al.  ISM properties in low-metallicity environments II. The dust spectral energy distribution of NGC 1569 , 2003, astro-ph/0306192.

[53]  Geoffrey C. Clayton,et al.  A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.

[54]  K. Venn,et al.  The present-day chemical composition of the SMC from UVES spectra of the sharp-lined, B-type dwarf AV 304 , 2003 .

[55]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[56]  H. Leroux,et al.  Low‐energy helium ion irradiation‐induced amorphization and chemical changes in olivine: Insights for silicate dust evolution in the interstellar medium , 2002 .

[57]  B. Draine,et al.  Infrared Emission from Interstellar Dust. III. The Small Magellanic Cloud , 2001, astro-ph/0112110.

[58]  D. York,et al.  Unusual Depletions toward the SMC Star Sk 155—Differences in Dust Composition in the SMC Interstellar Medium? , 2001 .

[59]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[60]  B. Draine,et al.  Infrared Emission from Interstellar Dust Ii. the Diffuse Interstellar Medium , 2000 .

[61]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[62]  B. Draine,et al.  Resonance Paramagnetic Relaxation and Alignment of Small Grains , 2000, The Astrophysical journal.

[63]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[64]  L. McFadden,et al.  Surface modification of olivine by H+ and He+ bombardment , 1999 .

[65]  R. Sault,et al.  The large‐scale HI structure of the Small Magellanic Cloud , 1999 .

[66]  A. Lazarian,et al.  Magnetic Dipole Microwave Emission from Dust Grains , 1998, astro-ph/9807009.

[67]  A. Lazarian,et al.  Electric Dipole Radiation from Spinning Dust Grains , 1998, astro-ph/9802239.

[68]  E. Dwek The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy , 1997, astro-ph/9707024.

[69]  A. Lazarian,et al.  Diffuse Galactic Emission from Spinning Dust Grains , 1997, astro-ph/9710152.

[70]  D. Mckay,et al.  The nature and origin of rims on lunar soil grains , 1997 .

[71]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[72]  A. Tielens,et al.  Grain destruction in shocks in the interstellar medium , 1994 .

[73]  J. Bradley Chemically Anomalous, Preaccretionally Irradiated Grains in Interplanetary Dust from Comets , 1994, Science.

[74]  Alexander G. G. M. Tielens,et al.  The physics of grain-grain collisions and gas-grain sputtering in interstellar shocks , 1994 .

[75]  Samuel Harvey Moseley,et al.  Design of the diffuse infrared background experiment (DIRBE) on COBE , 1993, Optics & Photonics.

[76]  E. Fitzpatrick,et al.  Composition of Interstellar Clouds in the Disk and Halo. IV. HD 215733 , 1993 .

[77]  Stephen C. Russell,et al.  Abundances of the heavy elements in the Magellanic Clouds. III - Interpretation of results , 1992 .

[78]  Charles L. Bennett,et al.  Preliminary spectral observations of the Galaxy with a 7 deg beam by the Cosmic Background Explorer (COBE) , 1991 .

[79]  A. Tielens,et al.  Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. , 1989, The Astrophysical journal. Supplement series.

[80]  B. Draine,et al.  Temperature fluctuations in interstellar grains. I. Computational method and sublimation of small grains , 1989 .

[81]  E. E. Baart,et al.  A 2.3-GHz radio continuum map of the Magellanic Cloud region , 1987 .

[82]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[83]  E. Salpeter,et al.  On the physics of dust grains in hot gas. , 1979 .

[84]  E. Salpeter,et al.  Destruction mechanisms for interstellar dust , 1979 .

[85]  B. Hapke,et al.  The surface composition of lunar soil grains: A comparison of the results of Auger and X-ray photoelectron (ESCA) spectroscopy , 1977 .

[86]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .