Mader’s Conjecture On Extremely Critical Graphs

A non-complete graph G is called an (n,k)-graph if it is n-connected but G—X is not (n−|X|+1)-connected for any X⊂V (G) with |X|≤k. Mader conjectured that for k≥3 the graph K2k+2−(1−factor) is the unique (2k,k)-graph(up to isomorphism).Here we prove this conjecture.

[1]  C. Berge Graphes et hypergraphes , 1970 .

[2]  Matthias Kriesell A Degree Sum Condition for the Existence of a Contractible Edge in a kappa-Connected Graph , 2001, J. Comb. Theory, Ser. B.

[3]  Nicola Martinov A recursive characterization of the 4-connected graphs , 1990, Discret. Math..

[4]  Su Jianji Fragments in kcritical n‐connected graphs , 1995 .

[5]  Peter J. Slater,et al.  On k-critical, n-connected graphs , 1977, Discret. Math..

[7]  Matthias Kriesell On k-Critical Connected Line Graphs , 1998, J. Comb. Theory, Ser. B.

[8]  Zsolt Tuza,et al.  Covering all cliques of a graph , 1991, Discret. Math..

[9]  Yahya Ould Hamidoune On multiply critically h-connected graphs , 1981, J. Comb. Theory, Ser. B.

[10]  Jianji Su On locally k-critically n-connected graphs , 1993, Discret. Math..

[11]  Gerard J. Chang,et al.  An upper bound for the transversal numbers of 4-uniform hypergraphs , 1990, J. Comb. Theory, Ser. B.

[12]  Wolfgang Mader Disjunkte Fragmente in kritisch n-fach zusammenhängenden Graphen , 1985, Eur. J. Comb..

[13]  Matthias Kriesell Almost All 3-Connected Graphs Contain a Contractible Set of k Vertices , 2001, J. Comb. Theory, Ser. B.

[14]  Wolfgang Mader,et al.  Generalizations of critical connectivity of graphs , 1988, Discret. Math..

[15]  Matthias Kriesell The k-Critical 2k-Connected Graphs for kepsilon{3, 4} , 2000, J. Comb. Theory, Ser. B.

[16]  Jian Ji Su Fragments in 2-Critically n-Connected Graphs , 1993, J. Comb. Theory, Ser. B.

[17]  Matthias Kriesell Upper Bounds to the Number of Vertices in a k-Critically n-Connected Graph , 2002, Graphs Comb..

[18]  Tibor Jordán On the existence of (k, l)-critical graphs , 1998, Discret. Math..