Renormalized Kaluza-Klein theories

Using six-dimensional quantum electrodynamics ($QED_6$) as an example we study the one-loop renormalization of the theory both from the six and four-dimensional points of view. Our main conclusion is that the properly renormalized four dimensional theory never forgets its higher dimensional origin. In particular, the coefficients of the neccessary extra counterterms in the four dimensional theory are determined in a precise way. We check our results by studying the reduction of $QED_4$ on a two-torus.

[1]  D. Ghilencea Higher Derivative Operators as loop counterterms in one-dimensional field theory orbifolds. , 2004, hep-ph/0409214.

[2]  D. Ghilencea Regularization techniques for the radiative corrections of Wilson lines and Kaluza-Klein states , 2003, hep-th/0311187.

[3]  D. Ghilencea Regularisation Techniques for the Radiative Corrections of the Kaluza-Klein states , 2003 .

[4]  C. Grojean,et al.  Loop corrections in higher dimensions via deconstruction , 2003, hep-ph/0310201.

[5]  Arcadi Santamaria,et al.  Power corrections in models with extra dimensions , 2003, hep-ph/0310085.

[6]  Arcadi Santamaria,et al.  Can power corrections be reliably computed in models with extra dimensions , 2003, hep-ph/0302083.

[7]  V. Frolov,et al.  Dimensional-reduction anomaly , 1999, hep-th/9909086.

[8]  L. Randall,et al.  An Alternative to compactification , 1999, hep-th/9906064.

[9]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[10]  幡中 久樹 The gauge hierarchy problem and higher dimensional gauge theories , 1999 .

[11]  A. Pomarol,et al.  Supersymmetry and electroweak breaking from extra dimensions at the TeV scale , 1998, hep-ph/9812489.

[12]  E. Álvarez,et al.  String Primer , 1998, hep-th/9810240.

[13]  G. Ecker,et al.  The one-loop functional as a Berezinian , 1998, hep-ph/9806436.

[14]  H. Hatanaka,et al.  The Gauge hierarchy problem and higher dimensional gauge theories , 1998, hep-th/9805067.

[15]  B. Holstein,et al.  Dynamics of the Standard Model , 1992 .

[16]  H. Osborn,et al.  General background field calculations with fermion fields , 1985 .

[17]  E. Fradkin,et al.  Quantum Properties of Higher Dimensional and Dimensionally Reduced Supersymmetric Theories , 1983 .

[18]  S. Ichinose,et al.  One-loop renormalization in curved spacetimes using the background-field method , 1983 .

[19]  K. Fujikawa Path Integral Measure for Gauge Invariant Fermion Theories , 1979 .

[20]  G. Hooft An algorithm for the poles at dimension four in the dimensional regularization procedure , 1973 .

[21]  Julian Schwinger,et al.  On gauge invariance and vacuum polarization , 1951 .

[22]  Alexander M. Polyakov,et al.  Gauge Fields And Strings , 1987 .

[23]  Tom Appelquist,et al.  Modern Kaluza-Klein Theories , 1987 .

[24]  M. Duff,et al.  DIVERGENCES AND ANOMALIES IN KALUZA-KLEIN THEORIES , 1984 .

[25]  M. Duff,et al.  Kaluza-Klein-Kounterterms , 1983 .

[26]  P. Gilkey The spectral geometry of a Riemannian manifold , 1975 .

[27]  Bryce S. DeWitt,et al.  Dynamical theory of groups and fields , 1964 .

[28]  H. R. Pitt Divergent Series , 1951, Nature.