Phase-Compensated Conformal Antennas for Changing Spherical Surfaces

Self-adapting conformal antennas for changing spherical surfaces are investigated in this work. More specifically, the theory on the relationship between the radius of the spherical surface, element spacing of the conformal array and required phase compensation is developed. Initially, for theoretical validation, a 4 × 4 phased array antenna is assembled with individual microstrip antennas used as the radiators at 2.47 GHz. Each antenna is connected to a commercially available voltage controlled phase shifter with identical SMA cables and then each phase shifter is connected to a port on a sixteen-way power divider. This phased-array antenna allows for convenient placement of individual patches on the spherical surface and precise phase control. For further validation, a second 4 × 4 phased-array antenna with embedded phase shifters and a sensing circuit is manufactured. The sensing circuit is used to measure the radius of curvature of the spherical surface and use this information to autonomously apply the appropriate phase compensation, based on the previous theoretical developments, to recover the radiation pattern of the array for different spherical surfaces at 2.47 GHz. Overall, good agreement between theory, simulation and experimental data is shown and that it is possible to recover the radiation pattern autonomously.

[1]  Randy L. Haupt,et al.  Antenna Arrays: A Computational Approach , 2010 .

[2]  B. Braaten,et al.  Scanning characteristics of a self-adapting phased-array antenna on a wedge-shaped conformal surface , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[3]  Y. Bayram,et al.  High-Strength, Metalized Fibers for Conformal Load Bearing Antenna Applications , 2011, IEEE Transactions on Antennas and Propagation.

[4]  H. Schippers,et al.  Vibrating antennas and compensation techniques Research in NATO/RTO/SET 087/RTG 50 , 2007, 2007 IEEE Aerospace Conference.

[5]  Wayne S. T. Rowe,et al.  PASSIVE COMPENSATION OF BEAM SHIFT IN A BENDING ARRAY , 2012 .

[6]  John L. Volakis,et al.  Multilayer printing of embroidered RF circuits on polymer composites , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[7]  M. Klemm,et al.  Textile UWB Antennas for Wireless Body Area Networks , 2006, IEEE Transactions on Antennas and Propagation.

[8]  Petra Ostermann,et al.  Conformal Array Antenna Theory And Design , 2016 .

[9]  M. M. Masud,et al.  A note on the fundamental maximum gain limit of the projection method for conformal phased array antennas , 2012, 2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS).

[10]  D. E. Anagnostou,et al.  A Self-Adapting Flexible (SELFLEX) Antenna Array for Changing Conformal Surface Applications , 2013, IEEE Transactions on Antennas and Propagation.

[11]  Y. Rahmat-Samii,et al.  Effect of conductive material on wearable antenna performance: a case study of WLAN antennas , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[12]  S. Mano,et al.  A projection method providing low sidelobe pattern in conformal array antennas , 1989, Digest on Antennas and Propagation Society International Symposium.

[13]  D. M. Pozar,et al.  Microstrip antennas , 1995, Proc. IEEE.

[14]  Erik Lier,et al.  An on-board integrated beam conditioning system for active phased array satellite antennas , 2000, Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No.00TH8510).

[15]  S. Gruszczynski,et al.  Influence of Curvature Radius on Radiation Patterns in Multibeam Conformal Antennas , 2006, 2006 European Microwave Conference.

[16]  M. Kivikoski,et al.  Effect of textile materials on wearable antenna performance: a case study of GPS antennas , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[17]  Hiroyuki Fujita,et al.  Polydimethylsiloxane membranes for millimeter-wave planar ultra flexible antennas , 2006 .

[18]  Arjan Meijerink,et al.  Conformal phased array with beam forming for airborne satellite communication , 2008, 2008 International ITG Workshop on Smart Antennas.

[19]  Erik Lier,et al.  Phased array calibration and characterization based on orthogonal coding: Theory and experimental validation , 2010, 2010 IEEE International Symposium on Phased Array Systems and Technology.

[20]  Y Bayram,et al.  E-Textile Conductors and Polymer Composites for Conformal Lightweight Antennas , 2010, IEEE Transactions on Antennas and Propagation.

[21]  John Huang,et al.  Bandwidth study of microstrip reflectarray and a novel phased reflectarray concept , 1995, IEEE Antennas and Propagation Society International Symposium. 1995 Digest.

[22]  Gregory N. Washington,et al.  Design and development of smart microstrip patch antennas , 1998 .

[23]  Paul J. Callus,et al.  Conformal Load-Bearing Antenna Structure for Australian Defence Force Aircraft , 2007 .

[24]  Peter Knott,et al.  Deformation and Vibration of Conformal Antenna Arrays and Compensation Techniques , 2006 .

[25]  Jing-Li Guo,et al.  Pattern Synthesis of Conformal Array Antenna in the Presence of Platform Using Differential Evolution Algorithm , 2009, IEEE Transactions on Antennas and Propagation.

[26]  T. F. Kennedy,et al.  Body-Worn E-Textile Antennas: The Good, the Low-Mass, and the Conformal , 2009, IEEE Transactions on Antennas and Propagation.

[27]  K. F. Warnick,et al.  Design Study of an L-Band Phased Array Feed for Wide-Field Surveys and Vibration Compensation on FAST , 2013, IEEE Transactions on Antennas and Propagation.

[28]  H. Schippers,et al.  Radiation analysis of conformal phased array antennas on distorted structures , 2003 .

[29]  Chi-Chih Chen,et al.  Estimating diversity for body-worn antennas , 2009, 2009 3rd European Conference on Antennas and Propagation.

[30]  A. W. Rudge,et al.  Adaptive control of a flexible linear array , 1973 .

[31]  Arthur A. Oliner,et al.  Phased array antennas , 1972 .