Fox function representation of non-debye relaxation processes

Applying the Liouville-Riemann fractional calculus, we derive and solve a fractional operator relaxation equation. We demonstrate how the exponentΒ of the asymptotic power law decay ∼t−β relates to the orderΝ of the fractional operatordv/dtv (0<Ν<1). Continuous-time random walk (CTRW) models offer a physical interpretation of fractional order equations, and thus we point out a connection between a special type of CTRW and our fractional relaxation model. Exact analytical solutions of the fractional relaxation equation are obtained in terms of Fox functions by using Laplace and Mellin transforms. Apart from fractional relaxation, Fox functions are further used to calculate Fourier integrals of Kohlrausch-Williams-Watts type relaxation functions. Because of its close connection to integral transforms, the rich class of Fox functions forms a suitable framework for discussing slow relaxation phenomena.

[1]  T. Nonnenmacher,et al.  Towards the formulation of a nonlinear fractional extended irreversible thermodynamics , 1989 .

[2]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[3]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[4]  E. W. Barnes A New Development of the Theory of the Hypergeometric Functions , 1908 .

[5]  W. Glöckle,et al.  A fractional model for mechanical stress relaxation , 1991 .

[6]  Related Topics,et al.  Relaxation in complex systems and related topics , 1990 .

[7]  Similarity solutions in fragmentation kinetics , 1991 .

[8]  Fritz Oberhettinger,et al.  Tables of Mellin Transforms , 1974 .

[9]  T F Nonnenmacher,et al.  Fractional integral and differential equations for a class of Levy-type probability densities , 1990 .

[10]  John T. Bendler,et al.  Levy (stable) probability densities and mechanical relaxation in solid polymers , 1984 .

[11]  A class of discontinuous integral , 1936 .

[12]  S. Glarum,et al.  Dielectric Relaxation of Isoamyl Bromide , 1960 .

[13]  H. Mellin,et al.  Abriß einer einheitlichen Theorie der Gamma- und der hypergeometrischen Funktionen , 1910 .

[14]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[15]  W. Wyss The fractional diffusion equation , 1986 .

[16]  B. Braaksma,et al.  Asymptotic expansions and analytic continuations for a class of Barnes-integrals , 1964 .

[17]  M. Shlesinger Asymptotic solutions of continuous-time random walks , 1974 .

[18]  C. Fox The $G$ and $H$ functions as symmetrical Fourier kernels , 1961 .

[19]  Recombination in amorphous materials as a continuous-time random-walk problem , 1983 .

[20]  C. Friedrich Relaxation and retardation functions of the Maxwell model with fractional derivatives , 1991 .

[21]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[22]  E W Montroll,et al.  On the Williams-Watts function of dielectric relaxation. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[24]  Michael F. Shlesinger,et al.  Williams-watts dielectric relaxation: A fractal time stochastic process , 1984 .

[25]  T. Nonnenmacher,et al.  Fractional integral operators and Fox functions in the theory of viscoelasticity , 1991 .

[26]  Arak M. Mathai,et al.  The H-function with applications in statistics and other disciplines , 1978 .

[27]  J. Ferry Viscoelastic properties of polymers , 1961 .