Serrin–type regularity criteria for the 3D MHD equations via one velocity component and one magnetic component

In this paper, we consider the Cauchy problem to the 3D MHD equations. We show that the Serrin–type conditions imposed on one component of the velocity u3 and one component of magnetic fields b3 with u3 ∈ L 0(−1, 0;L0(B(2))), b3 ∈ L 1(−1, 0;L1(B(2))), 2 p0 + 3 q0 = 2 p1 + 3 q1 = 1 and 3 < q0, q1 < +∞ imply that the suitable weak solution is regular at (0, 0). The proof is based on the new local energy estimates introduced by Chae-Wolf (Arch. Ration. Mech. Anal. 2021) and Wang-Wu-Zhang (arXiv:2005.11906).

[1]  Zhouping Xin,et al.  On the regularity of weak solutions to the magnetohydrodynamic equations , 2005 .

[2]  Ping Zhang,et al.  On the Critical One Component Regularity for 3-D Navier-Stokes System: General Case , 2013, Archive for Rational Mechanics and Analysis.

[3]  V. Sverák,et al.  Minimal initial data for potential Navier-Stokes singularities , 2009 .

[4]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[5]  Gabriele Eisenhauer,et al.  Multiple Integrals In The Calculus Of Variations And Nonlinear Elliptic Systems , 2016 .

[7]  Partial regularity of solutions to the magnetohydrodynamic equations , 2008 .

[8]  Fanghua Lin,et al.  A new proof of the Caffarelli‐Kohn‐Nirenberg theorem , 1998 .

[9]  B. Han,et al.  On the critical blow up criterion with one velocity component for 3D incompressible MHD system , 2020 .

[10]  V. Sverák,et al.  Backward Uniqueness for Parabolic Equations , 2003 .

[11]  Zhouping Xin,et al.  Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations , 2005 .

[12]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[13]  Roger Temam,et al.  Some mathematical questions related to the MHD equations , 1983 .

[14]  Zhifei Zhang,et al.  On the Interior Regularity Criteria for Suitable Weak Solutions of the Magnetohydrodynamics Equations , 2013, SIAM J. Math. Anal..

[15]  B. Han,et al.  Sharp One Component Regularity for Navier–Stokes , 2017, Archive for Rational Mechanics and Analysis.

[16]  G. Prodi Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .

[17]  I. Kukavica,et al.  An Anisotropic Partial Regularity Criterion for the Navier–Stokes Equations , 2015, 1511.02807.

[18]  Yong Zhou,et al.  Remarks on regularities for the 3D MHD equations , 2005 .

[19]  Ting Zhang,et al.  Critical regularity criteria for Navier–Stokes equations in terms of one directional derivative of the velocity , 2020, Mathematical Methods in the Applied Sciences.

[20]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[21]  Qionglei Chen,et al.  On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-Hydrodynamics Equations , 2007, 0711.0123.

[22]  Shuji Takahashi On interior regularity criteria for weak solutions of the navier-stokes equations , 1990 .

[23]  E. Titi,et al.  Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics , 2005, math/0503028.

[24]  J. L. Lions,et al.  Inéquations en thermoélasticité et magnétohydrodynamique , 1972 .

[25]  Zujin Zhang,et al.  Remarks on the global regularity criteria for the 3D MHD equations via two components , 2015 .

[26]  Zhifei Zhang,et al.  Scaling-invariant Serrin criterion via one velocity component for the Navier–Stokes equations , 2020, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.