MODELING, ANALYSIS AND RELIABILITY OF SEISMICALLY EXCITED STRUCTURES: COMPUTATIONAL ISSUES

A critical review of the current state of the art of the computing practices adopted by the earthquake engineering community is presented. Advanced computational tools are necessary for estimating the demand on seismically excited structures. Such computational methodologies can provide valuable information on a number of engineering parameters which have been proven essential for earthquake the engineering practice. The discussion extends from the finite element modeling of earthquake-resistant structures and the analysis procedures currently used to future developments considering the calculation of uncertainty and methodologies which rely on sophisticated computational methods. The objective is to provide a common ground of collaboration between the earthquake engineering and computational mechanics communities in an effort to mitigate future earthquake losses.

[1]  William C. Schnobrich,et al.  Non‐linear analysis of coupled wall systems , 1979 .

[2]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[3]  Julian J. Bommer,et al.  Probability and Uncertainty in Seismic Hazard Analysis , 2005 .

[4]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[5]  Luis Ibarra,et al.  Hysteretic models that incorporate strength and stiffness deterioration , 2005 .

[6]  Jose´A. Pincheira,et al.  Spectral Displacement Demands of Stiffness- and Strength-Degrading Systems , 2000 .

[7]  E. L. Wilson,et al.  Static and Dynamic Analysis of Multi-Story Buildings, Including P-Delta Effects , 1987 .

[8]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[9]  M. Faulkner,et al.  On the use of a segmental shooting technique for multiple solutions of planar elastica problems , 1993 .

[10]  Anil K. Chopra,et al.  A modal pushover analysis procedure to estimate seismic demands for unsymmetric‐plan buildings , 2004 .

[11]  Enrico Spacone,et al.  FIBRE BEAM–COLUMN MODEL FOR NON‐LINEAR ANALYSIS OF R/C FRAMES: PART I. FORMULATION , 1996 .

[12]  Ian F. C. Smith,et al.  Performance-based Structural Engineering , 1999 .

[13]  P. Pinto Reliability methods in earthquake engineering , 2001 .

[14]  Manolis Papadrakakis,et al.  A method for the automatic evaluation of the dynamic relaxation parameters , 1981 .

[15]  Alessandra Marini,et al.  Analysis of Reinforced Concrete Elements Including Shear Effects , 2006 .

[16]  Gouri Dhatt,et al.  Incremental displacement algorithms for nonlinear problems , 1979 .

[17]  Terje Haukaas,et al.  Shape sensitivities in the reliability analysis of nonlinear frame structures , 2006 .

[18]  Chanakya Arya,et al.  Buckling resistance of unstiffened webs , 2009 .

[19]  Ray W. Clough,et al.  Nonlinear Earthquake Behavior of Tall Buildings , 1967 .

[20]  John F. Hall,et al.  Problems encountered from the use (or misuse) of Rayleigh damping , 2006 .

[21]  J M Rotter Rapid Exact Inelastic Biaxial Bending Analysis , 1985 .

[22]  Bassam A. Izzuddin,et al.  An efficient beam–column formulation for 3D reinforced concrete frames , 2002 .

[23]  Klaus-Jürgen Bathe,et al.  Some practical procedures for the solution of nonlinear finite element equations , 1980 .

[24]  Michael H. Scott,et al.  Response sensitivity for nonlinear beam-column elements , 2004 .

[25]  Filip C. Filippou,et al.  Evaluation of Nonlinear Frame Finite-Element Models , 1997 .

[26]  Hayder A. Rasheed,et al.  An efficient nonlinear analysis of RC sections , 1994 .

[27]  M. A. Crisfield,et al.  Finite elements in plasticity—theory and practice, D. R. J. Owen and E. Hinton, Pineridge Press, Swansea , 1981 .

[28]  J. Z. Zhu,et al.  The finite element method , 1977 .

[29]  James L. Beck,et al.  Sensitivity of Building Loss Estimates to Major Uncertain Variables , 2002 .

[30]  A. Kiureghian,et al.  First-excursion probability of uncertain structures , 1992 .

[31]  Jinsuo Nie,et al.  A new directional simulation method for system reliability. Part II: application of neural networks , 2004 .

[32]  Shunsuke Otani,et al.  Model for Inelastic Biaxial Bending of Concrete Members , 1984 .

[33]  G. Strang,et al.  The solution of nonlinear finite element equations , 1979 .

[34]  Alex H. Barbat,et al.  Viscous damage model for timoshenko beam structures , 1997 .

[35]  R. Clough Effect of stiffness degradation on earthquake ductility requirements , 1966 .

[36]  Juan Carlos de la Llera,et al.  A comparative study of concentrated plasticity models in dynamic analysis of building structures , 2005 .

[37]  D. Addessi,et al.  A regularized force‐based beam element with a damage–plastic section constitutive law , 2007 .

[38]  G. Powell,et al.  3D Beam‐Column Element with Generalized Plastic Hinges , 1986 .

[39]  Y. K. Wen,et al.  Reliability and performance-based design☆ , 2001 .

[40]  Michael P. Collins,et al.  Predicting the Response of Reinforced Concrete Beams Subjected to Shear Using the Modified Compression Field Theory , 1988 .

[41]  M. V. Sivaselvan,et al.  Hysteretic models for deteriorating inelastic structures , 2000 .

[42]  Apostolos Fafitis,et al.  Interaction Surfaces of Reinforced-Concrete Sections in Biaxial Bending , 2001 .

[43]  Paola Ceresa,et al.  Flexure-Shear Fiber Beam-Column Elements for Modeling Frame Structures Under Seismic Loading — State of the Art , 2007 .

[44]  David I. McLean,et al.  A comparison of current computer analysis methods for seismic performance of reinforced concrete members , 2002 .

[45]  H. Banon,et al.  Seismic Damage in Reinforced Concrete Frames , 1981 .

[46]  G. I. Schuëller,et al.  On the treatment of uncertainties in structural mechanics and analysis , 2007 .

[47]  T. Takeda,et al.  Reinforced Concrete response to simulated earthquakes , 1970 .

[48]  Konstantinos V. Spiliopoulos,et al.  An efficient three‐dimensional solid finite element dynamic analysis of reinforced concrete structures , 2006 .

[49]  C. Allin Cornell,et al.  Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines , 2002 .

[50]  Iztok Peruš,et al.  Flexural deformation capacity of rectangular RC columns determined by the CAE method , 2006 .

[51]  Iason Papaioannou,et al.  Inelastic analysis of framed structures using the fiber approach , 2005 .

[52]  Y. Bozorgnia,et al.  Methods of Analysis for Earthquake-Resistant Structures , 2004 .

[53]  E. Popov,et al.  Nonlinear Beam Model for R/C Frame Analysis , 1979 .

[54]  Helmut Krawinkler,et al.  PROS AND CONS OF A PUSHOVER ANALYSIS OF SEISMIC PERFORMANCE EVALUATION , 1998 .

[55]  Nicolas Luco,et al.  Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses? , 2007 .

[56]  Michalis Fragiadakis,et al.  Fragility Assessment of Steel Frames Using Neural Networks , 2007 .

[57]  Francisco Armero,et al.  Energy-dissipative momentum-conserving time-stepping algorithms for finite strain multiplicative plasticity , 2006 .

[58]  K. Bathe,et al.  ON THE AUTOMATIC SOLUTION OF NONLINEAR FINITE ELEMENT EQUATIONS , 1983 .

[59]  M. Fardis,et al.  Deformations of Reinforced Concrete Members at Yielding and Ultimate , 2001 .

[60]  Serafim G. Arzoumanidis,et al.  Analysis of damaged concrete frames for cyclic loads , 1983 .

[61]  A. Ang,et al.  Mechanistic Seismic Damage Model for Reinforced Concrete , 1985 .

[62]  Manolis Papadrakakis,et al.  Structural optimization: A tool for evaluating seismic design procedures , 2006 .

[63]  Gregory G. Deierlein,et al.  STRESS-RESULTANT PLASTICITY FOR FRAME STRUCTURES , 1998 .

[64]  Vitelmo V. Bertero,et al.  Earthquake Engineering: From Engineering Seismology To Performance-Based Engineering , 2020 .

[65]  Michael H. Scott,et al.  Plastic Hinge Integration Methods for Force-Based Beam¿Column Elements , 2006 .

[66]  D. W. Scharpf,et al.  On the geometrical stiffness of a beam in space—a consistent V.W. approach , 1979 .

[67]  D. Hodges,et al.  Validation of the Variational Asymptotic Beam Sectional Analysis , 2002 .

[68]  Goran Turk,et al.  A kinematically exact finite element formulation of planar elastic - plastic frames , 1997 .

[69]  D. Owen,et al.  Finite elements in plasticity : theory and practice , 1980 .

[70]  Joel P. Conte,et al.  Finite Element Response Sensitivity Analysis: a comparison between force-based and Displacement-Based Frame Element Models , 2005 .

[71]  Enrico Spacone,et al.  Localization Issues in Force-Based Frame Elements , 2001 .

[72]  Pengcheng Liu,et al.  Prediction of Broadband Ground-Motion Time Histories: Hybrid Low/High- Frequency Method with Correlated Random Source Parameters , 2006 .

[73]  Y. L. Wong,et al.  Drift Capacity of Rectangular Reinforced Concrete Columns with Low Lateral Confinement and High-Axial Load , 2003 .

[74]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[75]  Manolis Papadrakakis,et al.  Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation , 1996 .

[76]  Filip C. Filippou,et al.  A 3D numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading , 2007 .

[77]  Y. J. Kang Nonlinear geometric, material and time dependent analysis of reinforced and prestressed concrete frames , 1977 .

[78]  C. Allin Cornell,et al.  Earthquakes, Records, and Nonlinear Responses , 1998 .

[79]  Melbourne Fernald Giberson,et al.  The response of nonlinear multi-story structures subjected to earthquake excitation , 1967 .

[80]  Sven Klinkel,et al.  Using finite strain 3D‐material models in beam and shell elements , 2002 .

[81]  Donald W. White,et al.  Displacement, Flexibility, and Mixed Beam – Column Finite Element Formulations for Distributed Plasticity Analysis , 2005 .

[82]  J. M. Bairan Garcia,et al.  Shear-Bending-Torsion Interaction in Structural Concrete Members: A Nonlinear Coupled Sectional Approach , 2007 .

[83]  P. Franchin,et al.  SEISMIC RELIABILITY ANALYSIS OF STRUCTURES , 2005 .

[84]  Peter LePoer Darvall,et al.  Elastic plastic softening analysis of plane frames , 1985 .

[85]  A. Der Kiureghian,et al.  Structural reliability methods for seismic safety assessment: a review , 1996 .

[86]  Marco Petrangeli,et al.  Fiber Element for Cyclic Bending and Shear of RC Structures. I: Theory , 1999 .

[87]  U. Hindenlang,et al.  Finite element analysis of two- and three-dimensional elasto-plastic frames—the natural approach☆ , 1982 .

[88]  G. Schuëller A state-of-the-art report on computational stochastic mechanics , 1997 .

[89]  Fragiadakis Michalis,et al.  Evaluation of the influence of vertical irregularities on the seismic performance of a nine‐storey steel frame , 2006 .

[90]  Dimitrios Vamvatsikos,et al.  Incremental dynamic analysis , 2002 .

[91]  Douglas A. Foutch,et al.  Translating Research to Practice: FEMA/SAC Performance-Based Design Procedures , 2003 .

[92]  Rui Pinho,et al.  DEVELOPMENT AND VERIFICATION OF A DISPLACEMENT-BASED ADAPTIVE PUSHOVER PROCEDURE , 2004 .

[93]  R. Clough,et al.  Dynamics Of Structures , 1975 .

[94]  Stephen A. Mahin,et al.  Analysis of Reinforced Concrete Beam-Columns under Uniaxial Excitation , 1988 .

[95]  Dimitrios Vamvatsikos,et al.  Direct Estimation of Seismic Demand and Capacity of Multidegree-of-Freedom Systems through Incremental Dynamic Analysis of Single Degree of Freedom Approximation , 2005 .

[96]  Joel P. Conte,et al.  Finite element response sensitivity analysis using force-based frame models , 2004 .

[97]  H. Saunders,et al.  Matrix Structural Analysis , 1979 .