Graphs with small hyperbolicity constant

Abstract If X is a geodesic metric space and x 1 , x 2 , x 3 ∈ X , a geodesic triangle T = { x 1 , x 2 , x 3 } is the union of the three geodesics [ x 1 x 2 ] , [ x 2 x 3 ] and [ x 3 x 1 ] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. We denote by δ ( X ) the sharpest hyperbolicity constant of X, i.e. δ ( X ) : = inf ⁡ { δ ≥ 0 : X is δ-hyperbolic}. In this paper we study the graphs with small hyperbolicity constant.

[1]  Jose Maria Sigarreta,et al.  Hyperbolicity and parameters of graphs , 2011, Ars Comb..

[2]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metrics spaces II , 2004 .

[3]  Jose Maria Sigarreta,et al.  Computing the hyperbolicity constant , 2011, Comput. Math. Appl..

[4]  A. Portilla,et al.  A characterization of Gromov hyperbolicity of surfaces with variable negative curvature , 2009 .

[5]  E. Tourís Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces , 2011 .

[6]  Jose Maria Sigarreta,et al.  Distortion of the Hyperbolicity Constant of a Graph , 2012, Electron. J. Comb..

[7]  JOSÉ M RODRÍGUEZ,et al.  Bounds on Gromov hyperbolicity constant in graphs , 2012 .

[8]  Chengpeng Zhang,et al.  Chordality and hyperbolicity of a graph , 2009, 0910.3544.

[9]  José M. Rodríguez,et al.  Gromov hyperbolic cubic graphs , 2012 .

[10]  Jose Maria Sigarreta,et al.  On the hyperbolicity constant in graphs , 2011, Discret. Math..

[11]  Jacobus H. Koolen,et al.  Hyperbolic Bridged Graphs , 2002, Eur. J. Comb..

[12]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[13]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metric spaces , 2004 .

[14]  E. Jonckheere,et al.  Geometry of network security , 2004, Proceedings of the 2004 American Control Conference.

[15]  Jose Maria Sigarreta,et al.  On the Hyperbolicity Constant of Line Graphs , 2011, Electron. J. Comb..

[16]  J. Koolen,et al.  On the Hyperbolicity of Chordal Graphs , 2001 .

[17]  José M. Rodríguez,et al.  Gromov hyperbolicity in Cartesian product graphs , 2010 .

[18]  Jose Maria Sigarreta,et al.  Hyperbolicity and complement of graphs , 2011, Appl. Math. Lett..

[19]  Jose Maria Sigarreta,et al.  Gromov hyperbolic graphs , 2013, Discret. Math..