Structural Basis for Receptor Recognition by the Human CD59-Responsive Cholesterol-Dependent Cytolysins.

[1]  M. Parker,et al.  Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation , 2015, Scientific Reports.

[2]  Md. Arif Sheikh,et al.  The Crystal Structure of Pneumolysin at 2.0 Å Resolution Reveals the Molecular Packing of the Pre-pore Complex , 2015, Scientific Reports.

[3]  W. Wimley,et al.  The Cholesterol-dependent Cytolysin Membrane-binding Interface Discriminates Lipid Environments of Cholesterol to Support β-Barrel Pore Insertion* , 2015, The Journal of Biological Chemistry.

[4]  M. Parker,et al.  An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin , 2015, Proceedings of the National Academy of Sciences.

[5]  Č. Venclovas,et al.  The Cytolytic Activity of Vaginolysin Strictly Depends on Cholesterol and Is Potentiated by Human CD59 , 2015, Toxins.

[6]  C. Day,et al.  The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity , 2014, Proceedings of the National Academy of Sciences.

[7]  W. Kühlbrandt,et al.  Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation , 2014, Nature Communications.

[8]  H. Nagamune,et al.  The diversity of receptor recognition in cholesterol‐dependent cytolysins , 2014, Microbiology and immunology.

[9]  Haydyn D. T. Mertens,et al.  A low-background-intensity focusing small-angle X-ray scattering undulator beamline , 2013 .

[10]  R. Smith,et al.  Structural Basis for Recognition of the Pore-Forming Toxin Intermedilysin by Human Complement Receptor CD59 , 2013, Cell reports.

[11]  R. Tweten,et al.  The Cholesterol-Dependent Cytolysin Signature Motif: A Critical Element in the Allosteric Pathway that Couples Membrane Binding to Pore Assembly , 2012, PLoS pathogens.

[12]  Maxim V. Petoukhov,et al.  New developments in the ATSAS program package for small-angle scattering data analysis , 2012, Journal of applied crystallography.

[13]  T. Nero,et al.  Mapping the Intermedilysin-Human CD59 Receptor Interface Reveals a Deep Correspondence with the Binding Site on CD59 for Complement Binding Proteins C8α and C9* , 2011, The Journal of Biological Chemistry.

[14]  Owen Johnson,et al.  iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM , 2011, Acta crystallographica. Section D, Biological crystallography.

[15]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[16]  M. Parker,et al.  Purification, crystallization, small-angle X-ray scattering and preliminary X-ray diffraction analysis of the SH2 domain of the Csk-homologous kinase. , 2011, Acta crystallographica. Section F, Structural biology and crystallization communications.

[17]  M. Pleckaityte,et al.  Production and characterization of monoclonal antibodies against vaginolysin: mapping of a region critical for its cytolytic activity. , 2010, Toxicon : official journal of the International Society on Toxinology.

[18]  R. Tweten,et al.  Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface , 2010, Proceedings of the National Academy of Sciences.

[19]  B. Bishop,et al.  Cellular Functions and X-ray Structure of Anthrolysin O, a Cholesterol-dependent Cytolysin Secreted by Bacillus anthracis* , 2009, Journal of Biological Chemistry.

[20]  R. Knott,et al.  Domain organization of the monomeric form of the Tom70 mitochondrial import receptor. , 2009, Journal of molecular biology.

[21]  R. Tweten,et al.  Intermedilysin-Receptor Interactions during Assembly of the Pore Complex , 2009, Journal of Biological Chemistry.

[22]  Dmitri I. Svergun,et al.  Electronic Reprint Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering , 2022 .

[23]  S. Gelber,et al.  Functional and Phylogenetic Characterization of Vaginolysin, the Human-Specific Cytolysin from Gardnerella vaginalis , 2008, Journal of bacteriology.

[24]  T. Hughes,et al.  High-resolution structures of bacterially expressed soluble human CD59. , 2007, Acta crystallographica. Section F, Structural biology and crystallization communications.

[25]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[26]  R. Tweten,et al.  Specific Protein-Membrane Contacts Are Required for Prepore and Pore Assembly by a Cholesterol-dependent Cytolysin* , 2007, Journal of Biological Chemistry.

[27]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[28]  R. Tweten,et al.  Cholesterol-Dependent Cytolysins, a Family of Versatile Pore-Forming Toxins , 2005, Infection and Immunity.

[29]  Helen R. Saibil,et al.  Structural Basis of Pore Formation by the Bacterial Toxin Pneumolysin , 2005, Cell.

[30]  M. Parker,et al.  Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of intermedilysin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[32]  P. Sims,et al.  Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin , 2004, Nature Structural &Molecular Biology.

[33]  H. Nagamune,et al.  The Human‐Specific Action of Intermedilysin, a Homolog of Streptolysin O, Is Dictated by Domain 4 of the Protein , 2004, Microbiology and immunology.

[34]  M. Parker,et al.  Crystallization and preliminary X-ray analysis of the human-specific toxin intermedilysin. , 2004, Acta crystallographica. Section D, Biological crystallography.

[35]  R. Tweten,et al.  Redefining cholesterol's role in the mechanism of the cholesterol-dependent cytolysins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Dmitri I. Svergun,et al.  Uniqueness of ab initio shape determination in small-angle scattering , 2003 .

[37]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[38]  Peter Kuhn,et al.  Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. , 2002, Journal of synchrotron radiation.

[39]  R. Tweten,et al.  Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin , 2002, Nature Structural Biology.

[40]  David Eisenberg,et al.  3D domain swapping: As domains continue to swap , 2002, Protein science : a publication of the Protein Society.

[41]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  W. Burmeister,et al.  Structural changes in a cryo-cooled protein crystal owing to radiation damage. , 2000, Acta crystallographica. Section D, Biological crystallography.

[43]  J. Rossjohn,et al.  The Mechanism of Membrane Insertion for a Cholesterol-Dependent Cytolysin A Novel Paradigm for Pore-Forming Toxins , 1999, Cell.

[44]  J. Rossjohn,et al.  Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. , 1998, Biochemistry.

[45]  Michael W Parker,et al.  Structure of a Cholesterol-Binding, Thiol-Activated Cytolysin and a Model of Its Membrane Form , 1997, Cell.

[46]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[47]  H. Nagamune,et al.  Intermedilysin, a novel cytotoxin specific for human cells secreted by Streptococcus intermedius UNS46 isolated from a human liver abscess , 1996, Infection and immunity.

[48]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[49]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[50]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[51]  M. Lawrence,et al.  Shape complementarity at protein/protein interfaces. , 1993, Journal of molecular biology.

[52]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[53]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.

[54]  G. Kleywegt,et al.  Detecting folding motifs and similarities in protein structures. , 1997, Methods in enzymology.