Rotating spiral waves in a modified Fitz-Hugh-Nagumo model

Abstract A modified Fitz-Hugh-Nagumo model (a two-variable reaction-diffusion system with an excitable kinetics and a diffusing fast variable) was used to study numerically the rotating waves in a circular domain and in a two-dimensional ring. Large deviations from a Wiener type of behaviour of rotating spiral waves were revealed. We have shown that there are conditions under which: (i) vortices can appear in a medium with a hole but do not exist in a disk; (ii) two kinds of vortices with considerably differing periods can occur in the same ring; (iii) there is a non-monotonic dependence of vortex period on the hole size. These phenomena are believed to take place in myocardial tissue and in chemical active media. The conditions under which they could be observed experimentally are discussed.