Convergent evidence for hierarchical prediction networks from human electrocorticography and magnetoencephalography

[1]  Timothy E. Ham,et al.  Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation , 2016, The Journal of Neuroscience.

[2]  Karl J. Friston,et al.  Estimating Directed Connectivity from Cortical Recordings and Reconstructed Sources , 2015, Brain Topography.

[3]  Karl J. Friston,et al.  Test-retest reliability of dynamic causal modeling for fMRI , 2015, NeuroImage.

[4]  Holly N. Phillips,et al.  Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions , 2015, The Journal of Neuroscience.

[5]  Hartwig R. Siebner,et al.  Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans , 2015, Brain : a journal of neurology.

[6]  Adeel Razi,et al.  Construct validation of a DCM for resting state fMRI , 2015, NeuroImage.

[7]  G. Fink,et al.  Dopaminergic modulation of motor network dynamics in Parkinson’s disease , 2015, Brain : a journal of neurology.

[8]  Michael Breakspear,et al.  Fusing concurrent EEG–fMRI with dynamic causal modeling: Application to effective connectivity during face perception , 2014, NeuroImage.

[9]  William D. Marslen-Wilson,et al.  The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing , 2014, BMC Neurology.

[10]  Marta I. Garrido,et al.  A mechanistic model of mismatch negativity in the ageing brain , 2014, Clinical Neurophysiology.

[11]  L. M. Ward,et al.  Temporo-frontal phase synchronization supports hierarchical network for mismatch negativity , 2014, Clinical Neurophysiology.

[12]  Karl J. Friston,et al.  Effective Connectivity Reveals Right-Hemisphere Dominance in Audiospatial Perception: Implications for Models of Spatial Neglect , 2014, The Journal of Neuroscience.

[13]  G. Fink,et al.  Connectivity-based approaches in stroke and recovery of function , 2014, The Lancet Neurology.

[14]  Raymond J. Dolan,et al.  The Brain Ages Optimally to Model Its Environment: Evidence from Sensory Learning over the Adult Lifespan , 2014, PLoS Comput. Biol..

[15]  Demian Wassermann,et al.  Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates , 2013, Front. Neurosci..

[16]  Karl J. Friston,et al.  A Neurocomputational Model of the Mismatch Negativity , 2013, PLoS Comput. Biol..

[17]  Karl J. Friston,et al.  Modeling ketamine effects on synaptic plasticity during the mismatch negativity. , 2013, Cerebral cortex.

[18]  Daniel K. Leventhal,et al.  Canceling actions involves a race between basal ganglia pathways , 2013, Nature Neuroscience.

[19]  S. Kochen,et al.  Expectation and Attention in Hierarchical Auditory Prediction , 2013, The Journal of Neuroscience.

[20]  Sylvain Baillet,et al.  Effects of aging on neuromagnetic mismatch responses to pitch changes , 2013, Neuroscience Letters.

[21]  James B. Rowe,et al.  The Impact of Neurodegeneration on Network Connectivity: A Study of Change Detection in Frontotemporal Dementia , 2013, Journal of Cognitive Neuroscience.

[22]  A. Ibanez,et al.  Motor-language coupling: Direct evidence from early Parkinson’s disease and intracranial cortical recordings , 2013, Cortex.

[23]  James B. Rowe,et al.  Reorganisation of brain networks in frontotemporal dementia and progressive supranuclear palsy☆ , 2013, NeuroImage: Clinical.

[24]  Karl J. Friston,et al.  An electrophysiological validation of stochastic DCM for fMRI , 2013 .

[25]  Marta I. Garrido,et al.  Dynamic Causal Modelling of epileptic seizure propagation pathways: A combined EEG–fMRI study , 2012, NeuroImage.

[26]  Stephen M. Smith,et al.  The future of FMRI connectivity , 2012, NeuroImage.

[27]  John Suckling,et al.  Sample Size Estimation for Comparing Parameters Using Dynamic Causal Modeling , 2012, Brain Connect..

[28]  James B. Rowe,et al.  Different Neural Mechanisms within Occipitotemporal Cortex Underlie Repetition Suppression across Same and Different-Size Faces , 2012, Cerebral cortex.

[29]  S. Dehaene,et al.  Evidence for a hierarchy of predictions and prediction errors in human cortex , 2011, Proceedings of the National Academy of Sciences.

[30]  Vangelis Sakkalis,et al.  Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG , 2011, Comput. Biol. Medicine.

[31]  Johan D. Carlin,et al.  A Head View-Invariant Representation of Gaze Direction in Anterior Superior Temporal Sulcus , 2011, Current Biology.

[32]  Klaas E. Stephan,et al.  Dynamic causal modelling: A critical review of the biophysical and statistical foundations , 2011, NeuroImage.

[33]  Karl J. Friston,et al.  Dynamic Causal Models and Physiological Inference: A Validation Study Using Isoflurane Anaesthesia in Rodents , 2011, PloS one.

[34]  Karl J. Friston,et al.  Preserved Feedforward But Impaired Top-Down Processes in the Vegetative State , 2011, Science.

[35]  Luca Passamonti,et al.  Changes in “Top-Down” Connectivity Underlie Repetition Suppression in the Ventral Visual Pathway , 2011, The Journal of Neuroscience.

[36]  Roger A. Barker,et al.  Dynamic causal modelling of effective connectivity from fMRI: Are results reproducible and sensitive to Parkinson's disease and its treatment? , 2010, NeuroImage.

[37]  J. Rowe Frontiers in Systems Neuroscience Systems Neuroscience , 2010 .

[38]  S. Rombouts,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[39]  Karl J. Friston,et al.  Ten simple rules for dynamic causal modeling , 2010, NeuroImage.

[40]  Xu Cui,et al.  Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics , 2010, NeuroImage.

[41]  Richard J. Davidson,et al.  Dynamic Causal Modeling applied to fMRI data shows high reliability , 2010, NeuroImage.

[42]  D. Kupfer,et al.  Abnormal Amygdala-Prefrontal Effective Connectivity to Happy Faces Differentiates Bipolar from Major Depression , 2009, Biological Psychiatry.

[43]  Karl J. Friston The free-energy principle: a rough guide to the brain? , 2009, Trends in Cognitive Sciences.

[44]  Karl J. Friston,et al.  Dynamic causal modeling for EEG and MEG , 2009, Human brain mapping.

[45]  Karl J. Friston,et al.  Predictive coding under the free-energy principle , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  Karl J. Friston,et al.  Dynamic Causal Modeling of the Response to Frequency Deviants , 2009, Journal of neurophysiology.

[47]  Karl J. Friston,et al.  The mismatch negativity: A review of underlying mechanisms , 2009, Clinical Neurophysiology.

[48]  Karl J. Friston Causal Modelling and Brain Connectivity in Functional Magnetic Resonance Imaging , 2009, PLoS biology.

[49]  C. Segebarth,et al.  Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation , 2008, PLoS biology.

[50]  Gerd Wagner,et al.  Fronto-cingulate effective connectivity in major depression: A study with fMRI and dynamic causal modeling , 2008, NeuroImage.

[51]  Karl J. Friston,et al.  A Hierarchy of Time-Scales and the Brain , 2008, PLoS Comput. Biol..

[52]  Karl J. Friston,et al.  The functional anatomy of the MMN: A DCM study of the roving paradigm , 2008, NeuroImage.

[53]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[54]  Karl J. Friston,et al.  Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG , 2008, NeuroImage.

[55]  Karl J. Friston,et al.  Evoked brain responses are generated by feedback loops , 2007, Proceedings of the National Academy of Sciences.

[56]  I. Winkler Interpreting the Mismatch Negativity , 2007 .

[57]  Karl J. Friston,et al.  Dynamic causal modelling of evoked potentials: A reproducibility study , 2007, NeuroImage.

[58]  W. van Drongelen,et al.  EEG Source Imaging: Correlating Source Locations and Extents With Electrocorticography and Surgical Resections in Epilepsy Patients , 2007, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[59]  Tony O’Hagan Bayes factors , 2006 .

[60]  Karl J. Friston,et al.  Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization , 2006, NeuroImage.

[61]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[62]  J Riera,et al.  Fusing EEG and fMRI based on a bottom-up model: inferring activation and effective connectivity in neural masses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[63]  Teemu Rinne,et al.  Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: an fMRI study , 2005, NeuroImage.

[64]  Matthew C. Keller,et al.  Increased sensitivity in neuroimaging analyses using robust regression , 2005, NeuroImage.

[65]  John J. Foxe,et al.  The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. , 2005, Cerebral cortex.

[66]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[67]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[68]  R. Näätänen,et al.  The mismatch negativity (MMN): towards the optimal paradigm , 2004, Clinical Neurophysiology.

[69]  Erich Schröger,et al.  Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence , 2003, NeuroImage.

[70]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[71]  E. Schröger,et al.  Differential Contribution of Frontal and Temporal Cortices to Auditory Change Detection: fMRI and ERP Results , 2002, NeuroImage.

[72]  J. Downar,et al.  The Effect of Task Relevance on the Cortical Response to Changes in Visual and Auditory Stimuli: An Event-Related fMRI Study , 2001, NeuroImage.

[73]  T. M. Darcey,et al.  Responses of Human Auditory Association Cortex to the Omission of an Expected Acoustic Event , 2001, NeuroImage.

[74]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[75]  K. Alho,et al.  Separate Time Behaviors of the Temporal and Frontal Mismatch Negativity Sources , 2000, NeuroImage.

[76]  Karl J. Friston,et al.  How Many Subjects Constitute a Study? , 1999, NeuroImage.

[77]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[78]  Hiroshi Shibasaki,et al.  Simultaneous Recording of Epileptiform Discharges by MEG and Subdural Electrodes in Temporal Lobe Epilepsy , 1997, NeuroImage.

[79]  J. Mäkelä,et al.  Human auditory cortex is activated by omissions of auditory stimuli , 1997, Brain Research.

[80]  F. Perrin,et al.  Separate Representation of Stimulus Frequency, Intensity, and Duration in Auditory Sensory Memory: An Event-Related Potential and Dipole-Model Analysis , 1995, Journal of Cognitive Neuroscience.

[81]  D L Woods,et al.  Lesions of frontal cortex diminish the auditory mismatch negativity. , 1994, Electroencephalography and clinical neurophysiology.

[82]  R. Näätänen,et al.  Attention and mismatch negativity. , 1993, Psychophysiology.

[83]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[84]  Silvia Kochen,et al.  Grid and depth intracranial electrodes localization in a normalized space using MRI and CT images. , 2015 .

[85]  I. Winkler,et al.  Loudness summation and the mismatch negativity event-related brain potential in humans. , 2006, Psychophysiology.

[86]  B. Jemel,et al.  Mismatch Negativity Results from Bilateral Asymmetric Dipole Sources in the Frontal and Temporal Lobes , 2004, Brain Topography.

[87]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[88]  V. Hachinski Brain mapping. , 1989, Archives of neurology.