Zr3C2O2 MXene as Promising Candidate for NH3 Sensor with High Sensitivity and Selectivity at Room Temperature

[1]  A. Dashora,et al.  Effect of surface functional group over tungsten carbide MXene for efficient NH3 gas sensing using density functional theory , 2022, Applied Surface Science.

[2]  Xiao‐Hong Li,et al.  Effect of coexistence of vacancy and strain on the electronic properties of NH3 adsorption on the Hf2CO2 MXene from first-principles calculations , 2022, Vacuum.

[3]  A. Kokalj Corrosion inhibitors: physisorbed or chemisorbed? , 2021, Corrosion Science.

[4]  Xiao‐Hong Li,et al.  Effect of the biaxial strain on the electronic structure, quantum capacitance of NH3 adsorption on pristine Hf2CO2 MXene using first-principles calculations , 2021, Applied Surface Science.

[5]  Y. Gogotsi,et al.  The world of two-dimensional carbides and nitrides (MXenes) , 2021, Science.

[6]  Jia-Hui Li,et al.  DFT exploration of sensor performances of two-dimensional WO3 to ten small gases in terms of work function and band gap changes and I-V responses , 2021 .

[7]  Jinyuan Zhou,et al.  Ti3C2TX MXene for Sensing Applications: Recent Progress, Design Principles, and Future Perspectives. , 2021, ACS nano.

[8]  B. Panchapakesan,et al.  Experimental and Theoretical Advances in MXene-Based Gas Sensors , 2021, ACS omega.

[9]  S. Du,et al.  Theoretical exploration on the vibrational and mechanical properties of M 3 C 2 /M 3 C 2 T 2 MXenes , 2020 .

[10]  R. Ahuja,et al.  Novel green phosphorene as a superior chemical gas sensing material. , 2020, Journal of hazardous materials.

[11]  B. B. Narakathu,et al.  Titanium Carbide MXene as NH3 Sensor: Realistic First-Principles Study , 2019, The Journal of Physical Chemistry C.

[12]  Lifang Wang,et al.  A novel highly selective and sensitive NH3 gas sensor based on monolayer Hf2CO2 , 2019, Applied Surface Science.

[13]  Guang Sun,et al.  Ti3C2 MXene Based Sensors with High Selectivity for NH3 Detection at Room-temperature. , 2019, ACS sensors.

[14]  Wei Zhang,et al.  Blue phosphorene monolayers as potential nano sensors for volatile organic compounds under point defects , 2019, Applied Surface Science.

[15]  2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications , 2019 .

[16]  Yiran Wang,et al.  Monolayer GeS as a potential candidate for NO2 gas sensors and capturers , 2018 .

[17]  Q. Meng,et al.  Theoretical investigation of zirconium carbide MXenes as prospective high capacity anode materials for Na-ion batteries , 2018 .

[18]  Wei Zhang,et al.  A First-Principles Study on the Vibrational and Electronic Properties of Zr-C MXenes* , 2018 .

[19]  R. Arróyave,et al.  Enhancement of the selectivity of MXenes (M2C, M = Ti, V, Nb, Mo) via oxygen-functionalization: promising materials for gas-sensing and -separation. , 2018, Physical chemistry chemical physics : PCCP.

[20]  Jihan Kim,et al.  Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. , 2018, ACS nano.

[21]  Yong Wang,et al.  Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption , 2017 .

[22]  Tianxing Wang,et al.  Monolayer Sc2CO2: A Promising Candidate as a SO2 Gas Sensor or Capturer , 2017 .

[23]  Young Soo Yoon,et al.  Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). , 2017, ACS applied materials & interfaces.

[24]  Xiujian Zhao,et al.  Understanding of Electrochemical Mechanisms for CO2 Capture and Conversion into Hydrocarbon Fuels in Transition-Metal Carbides (MXenes). , 2017, ACS nano.

[25]  Jianbo Cheng,et al.  MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection , 2016 .

[26]  Chenghua Sun,et al.  Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia , 2016 .

[27]  Y. Gogotsi,et al.  Highly Conductive Optical Quality Solution‐Processed Films of 2D Titanium Carbide , 2016 .

[28]  S. Du,et al.  A Two-Dimensional Zirconium Carbide by Selective Etching of Al3C3 from Nanolaminated Zr3Al3C5. , 2016, Angewandte Chemie.

[29]  Qingzhong Li,et al.  Monolayer Ti₂CO₂: A Promising Candidate for NH₃ Sensor or Capturer with High Sensitivity and Selectivity. , 2015, ACS applied materials & interfaces.

[30]  Jinlong Yang,et al.  CO2 Capture on h-BN Sheet with High Selectivity Controlled by External Electric Field , 2015 .

[31]  A. L. Ivanovskii,et al.  Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes , 2012 .

[32]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[33]  A. Kokalj,et al.  What determines the inhibition effectiveness of ATA, BTAH, and BTAOH corrosion inhibitors on copper? , 2010, Journal of the American Chemical Society.

[34]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[35]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  B. E. Robertson,et al.  Consistent approaches to van der Waals radii for the metallic elements , 2009 .

[37]  Pekka Pyykkö,et al.  Molecular single-bond covalent radii for elements 1-118. , 2009, Chemistry.

[38]  P. Avouris,et al.  Strong suppression of electrical noise in bilayer graphene nanodevices. , 2008, Nano letters.

[39]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[40]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[41]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[42]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[43]  A. Bondi van der Waals Volumes and Radii , 1964 .