Numerical integration in Galerkin meshless methods, applied to elliptic Neumann problem with non-constant coefficients

In this paper, we explore the effect of numerical integration on the Galerkin meshless method used to approximate the solution of an elliptic partial differential equation with non-constant coefficients with Neumann boundary conditions. We considered Galerkin meshless methods with shape functions that reproduce polynomials of degree k ≥ 1. We have obtained an estimate for the energy norm of the error in the approximate solution under the presence of numerical integration. This result has been established under the assumption that the numerical integration rule satisfies a certain discrete Green’s formula, which is not problem dependent, i.e., does not depend on the non-constant coefficients of the problem. We have also derived numerical integration rules satisfying the discrete Green’s formula.

[1]  Ted Belytschko,et al.  Numerical integration of the Galerkin weak form in meshfree methods , 1999 .

[2]  Giulio Ventura,et al.  The partition of unity quadrature in meshless methods , 2002 .

[3]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[6]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[7]  H. Matthies,et al.  Classification and Overview of Meshfree Methods , 2004 .

[8]  Jiun-Shyan Chen,et al.  Non‐linear version of stabilized conforming nodal integration for Galerkin mesh‐free methods , 2002 .

[9]  T. Belytschko,et al.  Nodal integration of the element-free Galerkin method , 1996 .

[10]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[11]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[12]  Max Jensen,et al.  Frontiers in numerical analysis - Durham 2010 , 2012 .

[13]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[14]  Weimin Han,et al.  Error analysis of the reproducing kernel particle method , 2001 .

[15]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[16]  Ivo Babuška,et al.  Effect of numerical integration on meshless methods , 2009 .

[17]  K. Bathe,et al.  The method of finite spheres with improved numerical integration , 2001 .

[18]  Giulio Ventura,et al.  The partition of unity quadrature in element-free crack modelling , 2003 .

[19]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[20]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[21]  G. Strang VARIATIONAL CRIMES IN THE FINITE ELEMENT METHOD , 1972 .

[22]  S. Atluri,et al.  The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple \& Less-costly Alternative to the Finite Element and Boundary Element Methods , 2002 .

[23]  John E. Osborn,et al.  On the approximability and the selection of particle shape functions , 2004, Numerische Mathematik.

[24]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[25]  K. Bathe,et al.  The method of finite spheres , 2000 .

[26]  Ivo Babuška,et al.  Quadrature for meshless methods , 2008 .

[27]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[28]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part II: Efficient Cover Construction and Reliable Integration , 2001, SIAM J. Sci. Comput..

[29]  J. Melenk On Approximation in Meshless Methods , 2005 .