A Multispectral Canopy LiDAR Demonstrator Project

The first demonstration of a multispectral light detection and ranging (LiDAR) optimized for detailed structure and physiology measurements in forest ecosystems is described. The basic principle is to utilize, in a single instrument, both the capacity of multispectral sensing to measure plant physiology [through normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI)] with the ability of LiDAR to measure vertical structure information and generate “hot spot” (specular) reflectance data independent of solar illumination. A tunable laser operated at four wavelengths (531, 550, 660, and 780 nm) was used to measure profiles of the NDVI and the PRI. Laboratory-based measurements were conducted for live trees, demonstrating that realistic values of the indexes can be measured. A model-based analysis demonstrates that the LiDAR waveforms cannot only capture the tree height information but also picks up the seasonal and vertical variation of NDVI inside the tree canopy.

[1]  K. Itten,et al.  Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction , 2006 .

[2]  K. Lim,et al.  Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators , 2004 .

[3]  R. P. Leersnijder Pinogram : a pine growth area model , 1992 .

[4]  David J. Harding,et al.  SRTM C-band and ICESat Laser Altimetry Elevation Comparisons as a Function of Tree Cover and Relief , 2006 .

[5]  K. Itten,et al.  Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties , 2004 .

[6]  Laura Chasmer,et al.  Towards a universal lidar canopy height indicator , 2006 .

[7]  Iain H. Woodhouse,et al.  Edge effects on tree height retrieval using X-band interferometry , 2006, IEEE Geoscience and Remote Sensing Letters.

[8]  Philip Lewis,et al.  3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains , 2006 .

[9]  J. Gamon,et al.  The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels , 1997, Oecologia.

[10]  Jacob T. Mundt,et al.  Mapping Sagebrush Distribution Using Fusion of Hyperspectral and Lidar Classifications , 2006 .

[11]  Caroline J. Nichol,et al.  Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest , 2002 .

[12]  K. Itten,et al.  LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management , 2004 .

[13]  Jonathan A. R. Rall,et al.  Spectral ratio biospheric lidar , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[14]  Juha Hyyppä,et al.  Toward Hyperspectral Lidar: Measurement of Spectral Backscatter Intensity With a Supercontinuum Laser Source , 2007, IEEE Geoscience and Remote Sensing Letters.

[15]  T. A. Black,et al.  Remote sensing of photosynthetic-light-use efficiency of boreal forest , 2000 .

[16]  T. Dawson,et al.  Quantifying forest above ground carbon content using LiDAR remote sensing , 2004 .

[17]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[18]  K. Itten,et al.  Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization , 2007 .

[19]  J. Hyyppä,et al.  Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests , 2008 .

[20]  Valerie A. Thomas,et al.  Spatial modelling of the fraction of photosynthetically active radiation absorbed by a boreal mixedwood forest using a lidar–hyperspectral approach , 2006 .

[21]  Ram M. Narayanan,et al.  Polarized Lidar Reflectance Measurements of Vegetation at Near-Infrared and Green Wavelengths , 2005 .

[22]  Sune Svanberg,et al.  Fluorescence Lidar Monitoring of Vegetation Status , 1995 .

[23]  Felix Morsdorf,et al.  Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling , 2009 .

[24]  W. Walker,et al.  Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy , 2006 .

[25]  Felix Morsdorf,et al.  Modelling multi-spectral LIDAR vegetation backscatter - assessing structural and physiological information content , 2008 .

[26]  Songxin Tan,et al.  Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing. , 2004, Applied optics.