Ubiquitin-binding domains

Ubiquitin-binding domains (UBDs) are a collection of modular protein domains that non-covalently bind to ubiquitin. These recently discovered motifs interpret and transmit information conferred by protein ubiquitylation to control various cellular events. Detailed molecular structures are known for a number of UBDs, but to understand their mechanism of action, we also need to know how binding specificity is determined, how ubiquitin binding is regulated, and the function of UBDs in the context of full-length proteins. Such knowledge will be key to our understanding of how ubiquitin regulates cellular proteins and processes.

[1]  R. Piper,et al.  The Vps27p–Hse1p complex binds ubiquitin and mediates endosomal protein sorting , 2002, Nature Cell Biology.

[2]  Li Chen,et al.  Rad23 links DNA repair to the ubiquitin/proteasome pathway , 1998, Nature.

[3]  S. Emr,et al.  Receptor downregulation and multivesicular-body sorting , 2002, Nature Reviews Molecular Cell Biology.

[4]  P. Simpson,et al.  Structure, dynamics and interactions of p47, a major adaptor of the AAA ATPase, p97 , 2004, The EMBO journal.

[5]  H. Stenmark,et al.  Eap45 in Mammalian ESCRT-II Binds Ubiquitin via a Phosphoinositide-interacting GLUE Domain*♦ , 2005, Journal of Biological Chemistry.

[6]  R. Mohney,et al.  The Ubiquitin-Interacting Motifs Target the Endocytic Adaptor Protein Epsin for Ubiquitination , 2002, Current Biology.

[7]  Yun-Cai Liu,et al.  Ubiquitin ligases and the immune response. , 2003, Annual review of immunology.

[8]  D. J. Clarke,et al.  UBA domains mediate protein-protein interactions between two DNA damage-inducible proteins. , 2001, Journal of molecular biology.

[9]  Wendell A Lim,et al.  The modular logic of signaling proteins: building allosteric switches from simple binding domains. , 2002, Current opinion in structural biology.

[10]  Q. Deveraux,et al.  Characterization of Two Polyubiquitin Binding Sites in the 26 S Protease Subunit 5a* , 1998, The Journal of Biological Chemistry.

[11]  D. J. Clarke,et al.  UBA domains of DNA damage-inducible proteins interact with ubiquitin , 2001, Nature Structural Biology.

[12]  H. Senn,et al.  Characterization of the binding interface between ubiquitin and class I human ubiquitin-conjugating enzyme 2b by multidimensional heteronuclear NMR spectroscopy in solution. , 1999, Journal of molecular biology.

[13]  Bing Zhang,et al.  A specific protein substrate for a deubiquitinating enzyme: Liquid facets is the substrate of Fat facets. , 2002, Genes & development.

[14]  Zhijian J. Chen,et al.  Vps9p CUE Domain Ubiquitin Binding Is Required for Efficient Endocytic Protein Traffic* , 2003, Journal of Biological Chemistry.

[15]  I. Madshus,et al.  Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes , 2002, Nature Cell Biology.

[16]  K. Cadwell,et al.  Ubiquitination on Nonlysine Residues by a Viral E3 Ubiquitin Ligase , 2005, Science.

[17]  H. Yokosawa,et al.  Tom1, a VHS Domain-containing Protein, Interacts with Tollip, Ubiquitin, and Clathrin* , 2003, Journal of Biological Chemistry.

[18]  Y. Yarden,et al.  Ligand‐Independent Degradation of Epidermal Growth Factor Receptor Involves Receptor Ubiquitylation and Hgs, an Adaptor Whose Ubiquitin‐Interacting Motif Targets Ubiquitylation by Nedd4 , 2002, Traffic.

[19]  P. Howley,et al.  DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Bonifacino,et al.  Interactions of GGA3 with the ubiquitin sorting machinery , 2004, Nature Cell Biology.

[21]  S. Fang,et al.  WW Domain HECT E3s Target Cbl RING Finger E3s for Proteasomal Degradation* , 2003, Journal of Biological Chemistry.

[22]  A. D. Robertson,et al.  The GAT Domains of Clathrin-associated GGA Proteins Have Two Ubiquitin Binding Motifs* , 2004, Journal of Biological Chemistry.

[23]  K. Nakayama,et al.  Tollip and Tom1 Form a Complex and Recruit Ubiquitin-conjugated Proteins onto Early Endosomes* , 2004, Journal of Biological Chemistry.

[24]  G. Shaw,et al.  Solution Structure of the Flexible Class II Ubiquitin-conjugating Enzyme Ubc1 Provides Insights for Polyubiquitin Chain Assembly*♦ , 2004, Journal of Biological Chemistry.

[25]  T. A. Wilkinson,et al.  Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Q. Deveraux,et al.  A 26 S protease subunit that binds ubiquitin conjugates. , 1994, The Journal of biological chemistry.

[27]  Linda Hicke,et al.  Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. , 2003, Annual review of cell and developmental biology.

[28]  Zhijian J. Chen,et al.  TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. , 2004, Molecular cell.

[29]  Zhijian J. Chen,et al.  The novel functions of ubiquitination in signaling. , 2004, Current opinion in cell biology.

[30]  Muyang Li,et al.  Crystal Structure of a UBP-Family Deubiquitinating Enzyme in Isolation and in Complex with Ubiquitin Aldehyde , 2002, Cell.

[31]  M. Nau,et al.  Cbl-b interacts with ubiquitinated proteins; differential functions of the UBA domains of c-Cbl and Cbl-b , 2004, Oncogene.

[32]  H. Stenmark,et al.  Protein sorting into multivesicular endosomes. , 2003, Current opinion in cell biology.

[33]  J. Feigon,et al.  Biochemical and structural analysis of the interaction between the UBA(2) domain of the DNA repair protein HHR23A and HIV-1 Vpr. , 2000, Biochemistry.

[34]  C. Ptak,et al.  Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. , 2001, Structure.

[35]  F. Supek,et al.  Ubiquitin Signals Protein Trafficking via Interaction with a Novel Ubiquitin Binding Domain in the Membrane Fusion Regulator, Vps9p , 2003, Current Biology.

[36]  M. Babu,et al.  Evolving nature of the AP2 α‐appendage hub during clathrin‐coated vesicle endocytosis , 2004 .

[37]  Michael J. Ellison,et al.  An NMR-based Model of the Ubiquitin-bound Human Ubiquitin Conjugation Complex Mms2·Ubc13 , 2003, The Journal of Biological Chemistry.

[38]  D Cowburn,et al.  Modular peptide recognition domains in eukaryotic signaling. , 1997, Annual review of biophysics and biomolecular structure.

[39]  W. Sundquist,et al.  Ubiquitin recognition by the human TSG101 protein. , 2004, Molecular cell.

[40]  C. Hill,et al.  Structural basis for the specificity of ubiquitin C‐terminal hydrolases , 1999, The EMBO journal.

[41]  A. D. Robertson,et al.  Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome , 2003, The Journal of cell biology.

[42]  J. Garin,et al.  Identification of Components of the Murine Histone Deacetylase 6 Complex: Link between Acetylation and Ubiquitination Signaling Pathways , 2001, Molecular and Cellular Biology.

[43]  C. Arighi,et al.  Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  G. Warren,et al.  Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1–Npl4 , 2002, The EMBO journal.

[45]  K. Hofmann,et al.  When ubiquitin meets ubiquitin receptors: a signalling connection , 2003, Nature Reviews Molecular Cell Biology.

[46]  Colin Gordon,et al.  Proteins containing the UBA domain are able to bind to multi-ubiquitin chains , 2001, Nature Cell Biology.

[47]  M. Komada,et al.  STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif. , 2003, Molecular biology of the cell.

[48]  W. Sundquist,et al.  Structure and Ubiquitin Interactions of the Conserved Zinc Finger Domain of Npl4* , 2003, Journal of Biological Chemistry.

[49]  P. Bucher,et al.  The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. , 1996, Trends in biochemical sciences.

[50]  A. Amerik,et al.  Mechanism and function of deubiquitinating enzymes. , 2004, Biochimica et biophysica acta.

[51]  Walter E. Gall,et al.  Solution structure of the ubiquitin‐binding domain in Swa2p from Saccharomyces cerevisiae , 2004, Proteins: Structure, Function, and Bioinformatics.

[52]  A. D. Robertson,et al.  GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network , 2004, Nature Cell Biology.

[53]  J. Hurley,et al.  A ubiquitin‐binding motif required for intramolecular monoubiquitylation, the CUE domain , 2003, The EMBO journal.

[54]  J. Feigon,et al.  Specificity of the Interaction between Ubiquitin-associated Domains and Ubiquitin* , 2004, Journal of Biological Chemistry.

[55]  K. Tsurugi,et al.  Regulation of the Gts1p Level by the Ubiquitination System to Maintain Metabolic Oscillations in the Continuous Culture of Yeast* , 2002, The Journal of Biological Chemistry.

[56]  Linda Hicke,et al.  Solution structure of Vps27 UIM–ubiquitin complex important for endosomal sorting and receptor downregulation , 2003, The EMBO journal.

[57]  M. Shirakawa,et al.  Structure of the UBA domain of Dsk2p in complex with ubiquitin molecular determinants for ubiquitin recognition. , 2005, Structure.

[58]  Aaron DiAntonio,et al.  Ubiquitin-dependent regulation of the synapse. , 2004, Annual review of neuroscience.

[59]  Rebecca L Rich,et al.  Structure and functional interactions of the Tsg101 UEV domain , 2002, The EMBO journal.

[60]  R. D. Fisher,et al.  Structure and Ubiquitin Binding of the Ubiquitin-interacting Motif* , 2003, Journal of Biological Chemistry.

[61]  S. Batalov,et al.  Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Overduin,et al.  Structure and Asn-Pro-Phe binding pocket of the Eps15 homology domain. , 1998, Science.

[63]  Stephanie L. H. Miller,et al.  Analysis of the Role of Ubiquitin-interacting Motifs in Ubiquitin Binding and Ubiquitylation*[boxs] , 2004, Journal of Biological Chemistry.

[64]  J. Zweier,et al.  A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal , 2002, Nature.

[65]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[66]  J. Feigon,et al.  Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions. , 2002, Journal of molecular biology.

[67]  B. Schulman,et al.  Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8 , 2003, Nature.

[68]  S. Lemeer,et al.  A Ubiquitin-interacting Motif (UIM) Is Essential for Eps15 and Eps15R Ubiquitination* , 2002, The Journal of Biological Chemistry.

[69]  Andrew Emili,et al.  Defining the SUMO-modified Proteome by Multiple Approaches in Saccharomyces cerevisiae* , 2005, Journal of Biological Chemistry.

[70]  E. Yeh,et al.  Regulation of the NEDD8 Conjugation System by a Splicing Variant, NUB1L* , 2003, Journal of Biological Chemistry.

[71]  Joshua D. Schnell,et al.  Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis , 2002, Nature Cell Biology.

[72]  Pier Paolo Di Fiore,et al.  Rapid Ca2+-dependent decrease of protein ubiquitination at synapses , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[73]  C. Pickart,et al.  Ubiquitin: structures, functions, mechanisms. , 2004, Biochimica et biophysica acta.

[74]  Scott D Emr,et al.  Ubiquitin interactions of NZF zinc fingers , 2004, The EMBO journal.

[75]  T. Pawson,et al.  Assembly of Cell Regulatory Systems Through Protein Interaction Domains , 2003, Science.

[76]  Fulvio Reggiori,et al.  Sorting of proteins into multivesicular bodies: ubiquitin‐dependent and ‐independent targeting , 2001, The EMBO journal.

[77]  D. Cowburn,et al.  A ubiquitin-interacting motif from Hrs binds to and occludes the ubiquitin surface necessary for polyubiquitination in monoubiquitinated proteins. , 2002, Biochemical and biophysical research communications.

[78]  S. Jentsch,et al.  Mobilization of Processed, Membrane-Tethered SPT23 Transcription Factor by CDC48UFD1/NPL4, a Ubiquitin-Selective Chaperone , 2001, Cell.

[79]  T. Rapoport,et al.  JCB Article , 2001 .

[80]  M. Muratani,et al.  How the ubiquitin–proteasome system controls transcription , 2003, Nature Reviews Molecular Cell Biology.

[81]  K. Nakayama,et al.  Noncovalent SUMO-1 Binding Activity of Thymine DNA Glycosylase (TDG) Is Required for Its SUMO-1 Modification and Colocalization with the Promyelocytic Leukemia Protein* , 2005, Journal of Biological Chemistry.

[82]  L. Castagnoli,et al.  Intersectin, a Novel Adaptor Protein with Two Eps15 Homology and Five Src Homology 3 Domains* , 1998, The Journal of Biological Chemistry.

[83]  C. Pickart,et al.  Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. , 2004, Journal of molecular biology.

[84]  P. Coffino Faculty Opinions recommendation of Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. , 2003 .

[85]  R. Eisenman,et al.  Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[86]  A. Miele,et al.  Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain β-propeller , 2004, Nature Structural &Molecular Biology.

[87]  C. Ponting Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction. , 2000, The Biochemical journal.

[88]  C. Pickart,et al.  Molecular Insights into Polyubiquitin Chain Assembly Crystal Structure of the Mms2/Ubc13 Heterodimer , 2001, Cell.

[89]  N. Krishna,et al.  Sequestosome 1/p62 Is a Polyubiquitin Chain Binding Protein Involved in Ubiquitin Proteasome Degradation , 2004, Molecular and Cellular Biology.

[90]  R. Deshaies,et al.  Multiubiquitin Chain Receptors Define a Layer of Substrate Selectivity in the Ubiquitin-Proteasome System , 2004, Cell.

[91]  Roger L. Williams,et al.  Structural Insights into Endosomal Sorting Complex Required for Transport (ESCRT-I) Recognition of Ubiquitinated Proteins* , 2004, Journal of Biological Chemistry.

[92]  D. Finley,et al.  Rad23 and Rpn10 Serve as Alternative Ubiquitin Receptors for the Proteasome* , 2004, Journal of Biological Chemistry.

[93]  Pier Paolo Di Fiore,et al.  A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins , 2002, Nature.

[94]  A. Haas,et al.  The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates. , 1985, The Journal of biological chemistry.

[95]  J. Hurley,et al.  Mechanism of Ubiquitin Recognition by the CUE Domain of Vps9p , 2003, Cell.

[96]  S. Emr,et al.  Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I , 2001, Cell.

[97]  Chou-Chi H. Li,et al.  Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin–proteasome degradation , 2001, Nature Cell Biology.

[98]  M. Goebl,et al.  Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. , 1998, Genes & development.

[99]  I. Amit,et al.  Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding. , 2004, Genes & development.

[100]  Hye-Won Shin,et al.  GAT (GGA and Tom1) Domain Responsible for Ubiquitin Binding and Ubiquitination* , 2004, Journal of Biological Chemistry.

[101]  W. Salerno,et al.  Solution Structure of a CUE-Ubiquitin Complex Reveals a Conserved Mode of Ubiquitin Binding , 2003, Cell.

[102]  L. Falquet,et al.  A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. , 2001, Trends in biochemical sciences.