Origins of power-law degree distribution in the heterogeneity of human activity in social networks

The probability distribution of number of ties of an individual in a social network follows a scale-free power-law. However, how this distribution arises has not been conclusively demonstrated in direct analyses of people's actions in social networks. Here, we perform a causal inference analysis and find an underlying cause for this phenomenon. Our analysis indicates that heavy-tailed degree distribution is causally determined by similarly skewed distribution of human activity. Specifically, the degree of an individual is entirely random - following a “maximum entropy attachment” model - except for its mean value which depends deterministically on the volume of the users' activity. This relation cannot be explained by interactive models, like preferential attachment, since the observed actions are not likely to be caused by interactions with other people.

[1]  Christian Borgs,et al.  Emergence of tempered preferential attachment from optimization , 2007, Proceedings of the National Academy of Sciences.

[2]  J. Pearl Causal inference in statistics: An overview , 2009 .

[3]  Mariano Sigman,et al.  Collective behavior in the spatial spreading of obesity , 2012, Scientific Reports.

[4]  G. Yule,et al.  A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[5]  R. Pastor-Satorras,et al.  Activity driven modeling of time varying networks , 2012, Scientific Reports.

[6]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[7]  P. M. Shearer,et al.  Zipf Distribution of U . S . Firm Sizes , 2022 .

[8]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[9]  M. A. Muñoz,et al.  Scale-free networks from varying vertex intrinsic fitness. , 2002, Physical review letters.

[10]  V. Yakovenko,et al.  Colloquium: Statistical mechanics of money, wealth, and income , 2009, 0905.1518.

[11]  Victor M. Yakovenko,et al.  Statistical mechanics of money , 2000 .

[12]  FaloutsosMichalis,et al.  On power-law relationships of the Internet topology , 1999 .

[13]  Lada A. Adamic,et al.  Internet: Growth dynamics of the World-Wide Web , 1999, Nature.

[14]  H. Kowarzyk Structure and Function. , 1910, Nature.

[15]  Ravi Kumar,et al.  Structure and evolution of blogspace , 2004, CACM.

[16]  Flemming Topsøe,et al.  Information-theoretical optimization techniques , 1979, Kybernetika.

[17]  Marián Boguñá,et al.  Popularity versus similarity in growing networks , 2011, Nature.

[18]  Guido Caldarelli,et al.  Scale-Free Networks , 2007 .

[19]  E. Edwards. Communication theory. , 1967, Ergonomics.

[20]  H. Inoue Verifying Power-Law Distribution in Empirical Data , 2010 .

[21]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[22]  S. Havlin,et al.  Scaling laws of human interaction activity , 2009, Proceedings of the National Academy of Sciences.

[23]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[24]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[25]  Tim Weninger,et al.  Structural Link Analysis from User Profiles and Friends Networks: A Feature Construction Approach , 2007, ICWSM.

[26]  Jure Leskovec,et al.  Planetary-scale views on a large instant-messaging network , 2008, WWW.

[27]  Aapo Hyvärinen,et al.  On the Identifiability of the Post-Nonlinear Causal Model , 2009, UAI.

[28]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[29]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[30]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[31]  Jon M. Kleinberg,et al.  Tracing information flow on a global scale using Internet chain-letter data , 2008, Proceedings of the National Academy of Sciences.

[32]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[33]  A. Vespignani,et al.  Modeling of Protein Interaction Networks , 2001, Complexus.

[34]  G. B. A. Barab'asi Competition and multiscaling in evolving networks , 2000, cond-mat/0011029.

[35]  Albert-László Barabási,et al.  The origin of bursts and heavy tails in human dynamics , 2005, Nature.

[36]  Bernhard Schölkopf,et al.  Information-geometric approach to inferring causal directions , 2012, Artif. Intell..

[37]  Bernhard Schölkopf,et al.  Nonlinear causal discovery with additive noise models , 2008, NIPS.