Naturally and Environmentally Driven Variations in Diatom Morphology: Implications for Diatom-Based Assessment of Water Quality

Diatom identification must consider the large variability in both morphological and morphometric features, characteristic of this group of microorganisms. This chapter describes variations in shape/size observed in diatom populations either as a consequence of their particular asexual reproductive cycle or induced by environmental conditions. Concerning this latter, teratological diatoms are commonly associated with a variety of environmental stressors, particularly the presence of micropollutants in the aquatic ecosystem, such as heavy metals. We evidence an overestimation of water quality conditions caused by overriding deformed individuals in diatom-based biomonitoring studies. It can be shown that normal and aberrant forms of the same taxon differ in autecological preferences. Finally, we advise on a critical issue in the description of diatom specimens, that is, the sample size on which morphometric ranges should be provided. The section concludes with some recommendations in this regard.

[1]  H. Guasch,et al.  Short-term arsenic exposure reduces diatom cell size in biofilm communities , 2016, Environmental Science and Pollution Research.

[2]  Michel Coste,et al.  Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006) , 2009 .

[3]  S. Passy Differential cell size optimization strategies produce distinct diatom richness–body size relationships in stream benthos and plankton , 2007 .

[4]  P. Kirk,et al.  International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) , 2012 .

[5]  John P. Smol,et al.  The diatoms: applications for the environmental and earth sciences , 2012 .

[6]  A. Munnecke,et al.  Systematic occurrences of malformed (teratological) acritarchs in the run-up of Early Palaeozoic δ13C isotope excursions , 2012 .

[7]  A. Irwin,et al.  Distributed under Creative Commons Cc-by 4.0 Community-and Population-level Changes in Diatom Size Structure in a Subarctic Lake over the Last Two Centuries , 2022 .

[8]  T. Platt,et al.  Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic [review article] , 2003 .

[9]  J. Lund OBSERVATIONS ON SOIL ALGAE. I. THE ECOLOGY, SIZE AND TAXONOMY OF BRITISH SOIL DIATOMS , 1945 .

[10]  Antonio Gasparrini,et al.  Reducing and meta-analysing estimates from distributed lag non-linear models , 2013, BMC Medical Research Methodology.

[11]  B. Beszteri Morphometric and molecular investigations of species limits in Cyclotella meneghiniana (Bacillariophyceae) and closely related species , 2005 .

[12]  Zoe V. Finkel,et al.  Phytoplankton in a changing world: cell size and elemental stoichiometry , 2010 .

[13]  C. Fortin,et al.  Using biofilms for monitoring metal contamination in lotic ecosystems: The protective effects of hardness and pH on metal bioaccumulation , 2016, Environmental toxicology and chemistry.

[14]  P. Hamilton,et al.  MORPHOLOGICAL AND ECOLOGICAL VARIATION WITHIN THE ACHNANTHIDIUM MINUTISSIMUM (BACILLARIOPHYCEAE) SPECIES COMPLEX 1 , 2007 .

[15]  L. Hoffmann,et al.  Diatom teratological forms and environmental alterations: a review , 2009, Hydrobiologia.

[16]  S. Sabater,et al.  Consistency in Diatom Response to Metal-Contaminated Environments , 2012 .

[17]  Claude Fortin,et al.  Diatom teratologies as biomarkers of contamination: Are all deformities ecologically meaningful? , 2017 .

[18]  Paul N. Somerville Tables for Obtaining Non-parametric Tolerance Limits , 1958 .

[19]  I. Hozo,et al.  Estimating the mean and variance from the median, range, and the size of a sample , 2005, BMC medical research methodology.

[20]  G. En,et al.  Spatial and temporal variations of Cocconeis placentula var. euglypta (Ehrenb.) 1854 Grunow, 1884 in drift and periphyton , 2007 .

[21]  C. Pfister,et al.  THE GENESIS OF SIZE VARIABILITY IN PLANTS AND ANIMALS , 2002 .

[22]  S. Blanco,et al.  Exploring the effects of acid mine drainage on diatom teratology using geometric morphometry , 2017, Ecotoxicology.

[23]  Lalit K. Pandey,et al.  Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river , 2014 .

[24]  Rosa Trobajo Pujadas Ecological analysis of periphytic diatoms in Mediterranean coastal wetlands (Empordà wetlands, NE Spain) , 2003 .

[25]  E. F. D. da Silva,et al.  Environmental impact of mining activities in the Lousal area (Portugal): chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. , 2011, The Science of the total environment.

[26]  M. Bertrand,et al.  Cadmium, Copper, Sodium and Zinc Effects on Diatoms: from Heaven to Hell — a Review , 2013 .

[27]  María Borrego-Ramos,et al.  Disentangling diatom species complexes: does morphometry suffice? , 2017, PeerJ.

[28]  E. A. Bergey,et al.  The use of diatoms in ecotoxicology and bioassessment: Insights, advances and challenges. , 2017, Water research.

[29]  Linda Kalof,et al.  Introduction to Social Statistics: The Logic of Statistical Reasoning , 2009 .

[30]  Marcelina Zimny,et al.  Palaeoecological implications of the subfossil Pediastrum argentinense-type in Europe , 2015 .

[31]  Janice L. Pappas,et al.  Quantitative shape analysis as a diagnostic and prescriptive tool in determining Fragilariforma (Bacillariophyta) taxon status , 2009 .

[32]  David M. Williams,et al.  UNICELL ONTOGENY and PHYLOGENY: EXAMPLES FROM THE DIATOMS , 1987, Cladistics : the international journal of the Willi Hennig Society.

[33]  E. Pfitzer Untersuchungen über Bau und Entwicklung der Bacillariaceen (Diatomaceen) , 1871 .

[34]  S. Blanco,et al.  A NEW DIATOM TERATOLOGY DRIVEN BY METAL POLLUTION IN A TEMPERATE RIVER (ROȘIA MONTANǍ, ROMANIA) , 2019 .

[35]  Janice L. Pappas,et al.  Multidimensional analysis of diatom morphologic and morphometric phenotypic variation and relation to niche , 1995 .

[36]  J. D. Macdonald I.—On the structure of the Diatomaceous frustule, and its genetic cycle , 1869 .

[37]  J. Wolfowitz,et al.  Introduction to the Theory of Statistics. , 1951 .

[38]  Rainer Gersonde,et al.  Morphometric variability in the diatom Fragilariopsis kerguelensis: Implications for Southern Ocean paleoceanography , 2007 .

[39]  Sybille Wunsam,et al.  Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada) , 2004 .

[40]  Daiqing Mou,et al.  SEPARATING TABELLARIA (BACILLARIOPHYCEAE) SHAPE GROUPS BASED ON FOURIER DESCRIPTORS 1 , 1992 .

[41]  M. Coste,et al.  “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management , 1993, Hydrobiologia.

[42]  M. R. Fernández,et al.  Design and Testing of a New Diatom-Based Index for Heavy Metal Pollution , 2017, Archives of Environmental Contamination and Toxicology.

[43]  P. Hamilton,et al.  Morphological, physiological and molecular responses of Nitzschia palea under cadmium stress , 2018, Ecotoxicology.

[44]  C. Klingenberg,et al.  Geometric morphometrics of symmetry and allometry in Micrasterias rotata (Zygnemophyceae, Viridiplantae) , 2010 .

[45]  Anna-Maria M. Schmid Aspects of morphogenesis and function of diatom cell walls with implications for taxonomy , 1994 .

[46]  I. Lavoie,et al.  Assessing the severity of diatom deformities using geometric morphometry , 2019 .

[47]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[48]  E. Bécares,et al.  Are biotic indices sensitive to river toxicants? A comparison of metrics based on diatoms and macro-invertebrates. , 2010, Chemosphere.

[49]  M. de Stefano,et al.  Benthic diatoms of the Vistula River estuary (Northern Poland): Seasonality, substrata preferences, and the influence of water chemistry , 2012 .

[50]  K. Gajewski,et al.  Numerical analysis of small Arctic diatoms (Bacillariophyceae) representing the Staurosira and Staurosirella species complexes , 2008 .

[51]  Stéphane Douady,et al.  Plasticity and robustness of pattern formation in the model diatom Phaeodactylum tricornutum. , 2009, The New phytologist.

[52]  E. A. Bergey,et al.  Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted waterbodies as a biomonitoring tool. , 2016, The Science of the total environment.

[53]  Douglas G Altman,et al.  Basic statistical reporting for articles published in biomedical journals: the "Statistical Analyses and Methods in the Published Literature" or the SAMPL Guidelines. , 2015, International journal of nursing studies.

[54]  K. Abt Scale-independent non-parametric multivariate tolerance regions and their application in medicine , 1982 .

[55]  O. Romero,et al.  Glacial valve size variation of the Southern Ocean diatom Fragilariopsis kerguelensis preserved in the Benguela Upwelling System, southeastern Atlantic , 2018, Palaeogeography, Palaeoclimatology, Palaeoecology.

[56]  G. Estabrook,et al.  RECOGNITION OF TAXONOMICALLY SIGNIFICANT CLUSTERS NEAR THE SPECIES LEVEL, USING COMPUTATIONALLY INTENSE METHODS, WITH EXAMPLES FROM THE STEPHANODISCUS NIAGARAE COMPLEX (BACILLARIOPHYCEAE) 1 , 1997 .

[57]  David G. Mann,et al.  Morphology and identity of some ecologically important small Nitzschia species , 2013 .

[58]  E. A. Ferreira da Silva,et al.  Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities. , 2009, The Science of the total environment.

[59]  M. Coste,et al.  Cadmium decontamination and reversal potential of teratological forms of the diatom Planothidium frequentissimum (Bacillariophyceae) after experimental contamination , 2013, Journal of phycology.

[60]  M. Coste,et al.  “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management , 1993 .

[61]  N. I. Hendey Littoral diatoms of Chichester harbour with special reference to fouling. , 1951, Journal of the Royal Microscopical Society.

[62]  E. Stoermer,et al.  The Diatoms: Diatoms as indicators in marine and estuarine environments , 2010 .

[63]  B. Beszteri,et al.  Conventional and geometric morphometric studies of valve ultrastructural variation in two closely related Cyclotella species (Bacillariophyta) , 2005 .

[64]  L. Hoffmann,et al.  Comparison of biotic indices for water quality diagnosis in the Duero Basin (Spain) , 2007 .

[65]  K. Serieyssol Diatoms of Europe: Diatoms of the European Inland Waters and Comparable habitats , 2012 .

[66]  A. Marchetti,et al.  Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications , 2009, Geobiology.

[67]  C. Braak,et al.  Inferring pH from diatoms: a comparison of old and new calibration methods , 1989, Hydrobiologia.

[68]  David G. Mann,et al.  Diatoms: Biology and Morphology of the Genera , 1990 .

[69]  B. Meyer,et al.  PHENOTYPIC VARIATION OF LIFE-CYCLE STAGES IN CLONES OF THREE SIMILAR CYCLOTELLA SPECIES AFTER INDUCED AUXOSPORE PRODUCTION , 2001 .

[70]  S. Spaulding,et al.  Life cycle size dynamics in Didymosphenia geminata (Bacillariophyceae) , 2017, Journal of phycology.

[71]  I. Lavoie,et al.  River water quality assessment based on a multi-descriptor approach including chemistry, diatom assemblage structure, and non-taxonomical diatom metrics. , 2018 .

[72]  J. Walsh Distribution-Free Tolerance Intervals for Continuous Symmetrical Populations , 1962 .

[73]  R. Barnes Bounding the required sample size for geologic site characterization , 1988 .

[74]  S. S. Wilks Determination of Sample Sizes for Setting Tolerance Limits , 1941 .

[75]  G. Durrieu,et al.  Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. , 2008, Environmental pollution.

[76]  P. Harrison,et al.  Iron requirements of the pennate diatom Pseudo‐nitzschia: Comparison of oceanic (high‐nitrate, low‐chlorophyll waters) and coastal species , 2006 .

[77]  E. Stoermer,et al.  Morphometric comparison of the neotype of Asterionella formosa Hassall (Heterokontophyta, Bacillariophyceae) with Asterionella edlundii s p. nov. from Lake Hovsgol, Mongolia , 2003 .

[78]  R. Sibson,et al.  QUANTITATIVE ATTRIBUTES IN TAXONOMIC DESCRIPTIONS , 1970 .

[79]  W. B. Turrill,et al.  Biometrical Studies on Herbarium Material , 1935, Nature.

[80]  Tiejun Tong,et al.  Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range , 2015, Statistical methods in medical research.

[81]  G. Robinson,et al.  Electrophoretic analysis of the species and population structure of the diatom Asterionella formosa , 1983 .

[82]  L. Hoffmann,et al.  Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions , 2009 .

[83]  E. Theriot AN EMPIRICALLY BASED MODEL OF VARIATION IN ROTATIONAL ELEMENTS IN CENTRIC DIATOMS WITH COMMENTS ON RATIOS IN PHYCOLOGY 1 , 1988 .