Block Kronecker linearizations of matrix polynomials and their backward errors

We introduce a new family of strong linearizations of matrix polynomials—which we call “block Kronecker pencils”—and perform a backward stability analysis of complete polynomial eigenproblems. These problems are solved by applying any backward stable algorithm to a block Kronecker pencil, such as the staircase algorithm for singular pencils or the QZ algorithm for regular pencils. This stability analysis allows us to identify those block Kronecker pencils that yield a computed complete eigenstructure which is exactly that of a slightly perturbed matrix polynomial. The global backward error analysis in this work presents for the first time the following key properties: it is a rigorous analysis valid for finite perturbations (i.e., it is not a first order analysis), it provides precise bounds, it is valid simultaneously for a large class of linearizations, and it establishes a framework that may be generalized to other classes of linearizations. These features are related to the fact that block Kronecker pencils are a particular case of the new family of “strong block minimal bases pencils”, which are robust under certain perturbations and, so, include certain perturbations of block Kronecker pencils.

[1]  E. Antoniou,et al.  A new family of companion forms of polynomial matrices , 2004 .

[2]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[3]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[4]  Nicholas J. Higham,et al.  A framework for analyzing nonlinear eigenproblems and parametrized linear systems , 2011 .

[5]  P. Dooren,et al.  Stratification of full rank polynomial matrices , 2013 .

[6]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[7]  P. Van Dooren A unitary method for deadbeat control , 1984 .

[8]  P. Dooren,et al.  Constructing strong ℓ-ifications from dual minimal bases , 2016 .

[9]  A. Edelman,et al.  Polynomial roots from companion matrix eigenvalues , 1995 .

[10]  Froilán M. Dopico,et al.  Fiedler Companion Linearizations and the Recovery of Minimal Indices , 2010, SIAM J. Matrix Anal. Appl..

[11]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II: software and applications , 1993, TOMS.

[12]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[13]  Kevin N. Vander Meulen,et al.  2 Characterization of Matrices in H n with a Pentadiagonal Form , 2015 .

[14]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[15]  J. Dicapua Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.

[16]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[17]  L. Biegler,et al.  Control and Optimization with Differential-Algebraic Constraints , 2012 .

[18]  Dario Andrea Bini,et al.  On a Class of Matrix Pencils Equivalent to a Given Matrix Polynomial , 2014 .

[19]  Paul Van Dooren,et al.  A Framework for Structured Linearizations of Matrix Polynomials in Various Bases , 2016, SIAM J. Matrix Anal. Appl..

[20]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[21]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[22]  Sven Hammarling,et al.  An algorithm for the complete solution of quadratic eigenvalue problems , 2013, TOMS.

[23]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[24]  F. R. Gantmakher The Theory of Matrices , 1984 .

[25]  S. Furtado,et al.  Structured strong linearizations from Fiedler pencils with repetition I , 2014 .

[26]  G. Stewart On the Sensitivity of the Eigenvalue Problem $Ax = \lambda Bx$ , 1972 .

[27]  P. Dooren The generalized eigenstructure problem in linear system theory , 1981 .

[28]  Federico Poloni,et al.  Duality of matrix pencils, Wong chains and linearizations , 2015 .

[29]  V. Mehrmann,et al.  Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .

[30]  V. Mehrmann,et al.  Möbius transformations of matrix polynomials , 2015 .

[31]  S. Van Huffel,et al.  Exact and Approximate Modeling of Linear Systems: A Behavioral Approach , 2006 .

[32]  Froilán M. Dopico,et al.  Fiedler companion linearizations for rectangular matrix polynomials , 2012 .

[33]  Froilán M. Dopico,et al.  SHARP LOWER BOUNDS FOR THE DIMENSION OF LINEARIZATIONS OF MATRIX POLYNOMIALS , 2008 .

[34]  Paul Van Dooren,et al.  Robustness and Perturbations of Minimal Bases , 2016, 1612.03793.

[35]  Froilán M. Dopico,et al.  Recovery of Eigenvectors and Minimal Bases of Matrix Polynomials from Generalized Fiedler Linearizations , 2011, SIAM J. Matrix Anal. Appl..

[36]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[37]  Nicholas J. Higham,et al.  The Conditioning of Linearizations of Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[38]  Paul Van Dooren,et al.  Matrix Polynomials with Completely Prescribed Eigenstructure , 2015, SIAM J. Matrix Anal. Appl..

[39]  I. Gohberg,et al.  General theory of regular matrix polynomials and band Toeplitz operators , 1988 .

[40]  Alex Townsend,et al.  Vector Spaces of Linearizations for Matrix Polynomials: A Bivariate Polynomial Approach , 2016, SIAM J. Matrix Anal. Appl..

[41]  Froilán M. Dopico,et al.  Strong Linearizations of Rational Matrices , 2018, SIAM J. Matrix Anal. Appl..

[42]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[43]  Paul Van Dooren,et al.  Structured backward error analysis of linearized structured polynomial eigenvalue problems , 2016, Math. Comput..

[44]  Robert M. Corless,et al.  Stability of rootfinding for barycentric Lagrange interpolants , 2013, Numerical Algorithms.

[45]  Yangfeng Su,et al.  A Backward Stable Algorithm for Quadratic Eigenvalue Problems , 2014, SIAM J. Matrix Anal. Appl..

[46]  Froilán M. Dopico,et al.  Backward stability of polynomial root-finding using Fiedler companion matrices , 2014 .

[47]  Froilán M. Dopico,et al.  Palindromic companion forms for matrix polynomials of odd degree , 2011, J. Comput. Appl. Math..

[48]  Vanni Noferini,et al.  Fiedler-comrade and Fiedler-Chebyshev pencils , 2016, SIAM J. Matrix Anal. Appl..

[49]  Froilán M. Dopico,et al.  Large vector spaces of block-symmetric strong linearizations of matrix polynomials , 2015 .

[50]  Stefan Güttel,et al.  The nonlinear eigenvalue problem∗ , 2017 .

[51]  Linda R. Petzold,et al.  Differential-algebraic equations , 2008, Scholarpedia.

[52]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[53]  Frann Coise Tisseur Backward Error and Condition of Polynomial Eigenvalue Problems , 1999 .

[54]  Darrell Schmidt,et al.  EIGENVALUES OF TRIDIAGONAL PSEUDO-TOEPLITZ MATRICES , 1999 .

[55]  I. J. Good THE COLLEAGUE MATRIX, A CHEBYSHEV ANALOGUE OF THE COMPANION MATRIX , 1961 .

[56]  Israel Gohberg,et al.  Factorization indices and kronecker indices of matrix polynomials , 1979 .

[57]  P. Lancaster,et al.  Linearization of matrix polynomials expressed in polynomial bases , 2008 .

[58]  Robert M. Corless,et al.  Backward Error of Polynomial Eigenvalue Problems Solved by Linearization of Lagrange Interpolants , 2015, SIAM J. Matrix Anal. Appl..

[59]  Froil'an M. Dopico,et al.  A unified approach to Fiedler-like pencils via strong block minimal bases pencils , 2016, 1611.07170.

[60]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[61]  Javier Pérez,et al.  Constructing Strong Linearizations of Matrix Polynomials Expressed in Chebyshev Bases , 2017, SIAM J. Matrix Anal. Appl..

[62]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[63]  Froilán M. Dopico,et al.  A simplified approach to Fiedler-like pencils via block minimal bases pencils , 2018, Linear Algebra and its Applications.

[64]  Froilán M. Dopico,et al.  Spectral equivalence of matrix polynomials and the index sum theorem , 2014 .

[65]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[66]  P. Van Dooren,et al.  A pencil approach for embedding a polynomial matrix into a unimodular matrix , 1988 .

[67]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[68]  Miroslav Fiedler,et al.  A note on companion matrices , 2003 .

[69]  F. M. Dopico,et al.  LINEARIZATIONS OF SINGULAR MATRIX POLYNOMIALS AND THE RECOVERY OF MINIMAL INDICES , 2009 .

[70]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .

[71]  Froilán M. Dopico,et al.  Condition numbers for inversion of Fiedler companion matrices , 2013 .

[72]  Paul Van Dooren,et al.  Backward Error Analysis of Polynomial Eigenvalue Problems Solved by Linearization , 2015, SIAM J. Matrix Anal. Appl..

[73]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[74]  P. Dooren,et al.  The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .

[75]  Vanni Noferini,et al.  Chebyshev rootfinding via computing eigenvalues of colleague matrices: when is it stable? , 2017, Math. Comput..

[76]  Paul Van Dooren,et al.  Polynomial Zigzag Matrices, Dual Minimal Bases, and the Realization of Completely Singular Polynomials , 2016 .

[77]  Yuji Nakatsukasa,et al.  On the stability of computing polynomial roots via confederate linearizations , 2015, Math. Comput..

[78]  Nicholas J. Higham,et al.  Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[79]  Paul Van Dooren Deadbeat control: A special inverse eigenvalue problem , 1984 .

[80]  C. Loan The ubiquitous Kronecker product , 2000 .

[81]  Efstathios N. Antoniou,et al.  A permuted factors approach for the linearization of polynomial matrices , 2011, Math. Control. Signals Syst..

[82]  Nicholas J. Higham,et al.  Backward Error of Polynomial Eigenproblems Solved by Linearization , 2007, SIAM J. Matrix Anal. Appl..

[83]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997, SIAM J. Matrix Anal. Appl..

[84]  S. Furtado,et al.  Palindromic linearizations of a matrix polynomial of odd degreee obtained from Fiedler pencils with repetition , 2012 .