Block Kronecker linearizations of matrix polynomials and their backward errors
暂无分享,去创建一个
Paul Van Dooren | Froilán M. Dopico | Javier Pérez | Piers W. Lawrence | P. Dooren | J. Pérez | F. Dopico
[1] E. Antoniou,et al. A new family of companion forms of polynomial matrices , 2004 .
[2] Karl Meerbergen,et al. The Quadratic Eigenvalue Problem , 2001, SIAM Rev..
[3] Volker Mehrmann,et al. Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..
[4] Nicholas J. Higham,et al. A framework for analyzing nonlinear eigenproblems and parametrized linear systems , 2011 .
[5] P. Dooren,et al. Stratification of full rank polynomial matrices , 2013 .
[6] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[7] P. Van Dooren. A unitary method for deadbeat control , 1984 .
[8] P. Dooren,et al. Constructing strong ℓ-ifications from dual minimal bases , 2016 .
[9] A. Edelman,et al. Polynomial roots from companion matrix eigenvalues , 1995 .
[10] Froilán M. Dopico,et al. Fiedler Companion Linearizations and the Recovery of Minimal Indices , 2010, SIAM J. Matrix Anal. Appl..
[11] James Demmel,et al. The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II: software and applications , 1993, TOMS.
[12] P. Lancaster,et al. Factorization of selfadjoint matrix polynomials with constant signature , 1982 .
[13] Kevin N. Vander Meulen,et al. 2 Characterization of Matrices in H n with a Pentadiagonal Form , 2015 .
[14] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[15] J. Dicapua. Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.
[16] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[17] L. Biegler,et al. Control and Optimization with Differential-Algebraic Constraints , 2012 .
[18] Dario Andrea Bini,et al. On a Class of Matrix Pencils Equivalent to a Given Matrix Polynomial , 2014 .
[19] Paul Van Dooren,et al. A Framework for Structured Linearizations of Matrix Polynomials in Various Bases , 2016, SIAM J. Matrix Anal. Appl..
[20] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[21] V. Mehrmann. The Autonomous Linear Quadratic Control Problem , 1991 .
[22] Sven Hammarling,et al. An algorithm for the complete solution of quadratic eigenvalue problems , 2013, TOMS.
[23] F. Gantmacher,et al. Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .
[24] F. R. Gantmakher. The Theory of Matrices , 1984 .
[25] S. Furtado,et al. Structured strong linearizations from Fiedler pencils with repetition I , 2014 .
[26] G. Stewart. On the Sensitivity of the Eigenvalue Problem $Ax = \lambda Bx$ , 1972 .
[27] P. Dooren. The generalized eigenstructure problem in linear system theory , 1981 .
[28] Federico Poloni,et al. Duality of matrix pencils, Wong chains and linearizations , 2015 .
[29] V. Mehrmann,et al. Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .
[30] V. Mehrmann,et al. Möbius transformations of matrix polynomials , 2015 .
[31] S. Van Huffel,et al. Exact and Approximate Modeling of Linear Systems: A Behavioral Approach , 2006 .
[32] Froilán M. Dopico,et al. Fiedler companion linearizations for rectangular matrix polynomials , 2012 .
[33] Froilán M. Dopico,et al. SHARP LOWER BOUNDS FOR THE DIMENSION OF LINEARIZATIONS OF MATRIX POLYNOMIALS , 2008 .
[34] Paul Van Dooren,et al. Robustness and Perturbations of Minimal Bases , 2016, 1612.03793.
[35] Froilán M. Dopico,et al. Recovery of Eigenvectors and Minimal Bases of Matrix Polynomials from Generalized Fiedler Linearizations , 2011, SIAM J. Matrix Anal. Appl..
[36] Volker Mehrmann,et al. Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..
[37] Nicholas J. Higham,et al. The Conditioning of Linearizations of Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..
[38] Paul Van Dooren,et al. Matrix Polynomials with Completely Prescribed Eigenstructure , 2015, SIAM J. Matrix Anal. Appl..
[39] I. Gohberg,et al. General theory of regular matrix polynomials and band Toeplitz operators , 1988 .
[40] Alex Townsend,et al. Vector Spaces of Linearizations for Matrix Polynomials: A Bivariate Polynomial Approach , 2016, SIAM J. Matrix Anal. Appl..
[41] Froilán M. Dopico,et al. Strong Linearizations of Rational Matrices , 2018, SIAM J. Matrix Anal. Appl..
[42] Volker Mehrmann,et al. Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .
[43] Paul Van Dooren,et al. Structured backward error analysis of linearized structured polynomial eigenvalue problems , 2016, Math. Comput..
[44] Robert M. Corless,et al. Stability of rootfinding for barycentric Lagrange interpolants , 2013, Numerical Algorithms.
[45] Yangfeng Su,et al. A Backward Stable Algorithm for Quadratic Eigenvalue Problems , 2014, SIAM J. Matrix Anal. Appl..
[46] Froilán M. Dopico,et al. Backward stability of polynomial root-finding using Fiedler companion matrices , 2014 .
[47] Froilán M. Dopico,et al. Palindromic companion forms for matrix polynomials of odd degree , 2011, J. Comput. Appl. Math..
[48] Vanni Noferini,et al. Fiedler-comrade and Fiedler-Chebyshev pencils , 2016, SIAM J. Matrix Anal. Appl..
[49] Froilán M. Dopico,et al. Large vector spaces of block-symmetric strong linearizations of matrix polynomials , 2015 .
[50] Stefan Güttel,et al. The nonlinear eigenvalue problem∗ , 2017 .
[51] Linda R. Petzold,et al. Differential-algebraic equations , 2008, Scholarpedia.
[52] S. Liberty,et al. Linear Systems , 2010, Scientific Parallel Computing.
[53] Frann Coise Tisseur. Backward Error and Condition of Polynomial Eigenvalue Problems , 1999 .
[54] Darrell Schmidt,et al. EIGENVALUES OF TRIDIAGONAL PSEUDO-TOEPLITZ MATRICES , 1999 .
[55] I. J. Good. THE COLLEAGUE MATRIX, A CHEBYSHEV ANALOGUE OF THE COMPANION MATRIX , 1961 .
[56] Israel Gohberg,et al. Factorization indices and kronecker indices of matrix polynomials , 1979 .
[57] P. Lancaster,et al. Linearization of matrix polynomials expressed in polynomial bases , 2008 .
[58] Robert M. Corless,et al. Backward Error of Polynomial Eigenvalue Problems Solved by Linearization of Lagrange Interpolants , 2015, SIAM J. Matrix Anal. Appl..
[59] Froil'an M. Dopico,et al. A unified approach to Fiedler-like pencils via strong block minimal bases pencils , 2016, 1611.07170.
[60] Peter Lancaster,et al. The theory of matrices , 1969 .
[61] Javier Pérez,et al. Constructing Strong Linearizations of Matrix Polynomials Expressed in Chebyshev Bases , 2017, SIAM J. Matrix Anal. Appl..
[62] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[63] Froilán M. Dopico,et al. A simplified approach to Fiedler-like pencils via block minimal bases pencils , 2018, Linear Algebra and its Applications.
[64] Froilán M. Dopico,et al. Spectral equivalence of matrix polynomials and the index sum theorem , 2014 .
[65] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[66] P. Van Dooren,et al. A pencil approach for embedding a polynomial matrix into a unimodular matrix , 1988 .
[67] H. Rosenbrock,et al. State-space and multivariable theory, , 1970 .
[68] Miroslav Fiedler,et al. A note on companion matrices , 2003 .
[69] F. M. Dopico,et al. LINEARIZATIONS OF SINGULAR MATRIX POLYNOMIALS AND THE RECOVERY OF MINIMAL INDICES , 2009 .
[70] Erik Elmroth,et al. A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .
[71] Froilán M. Dopico,et al. Condition numbers for inversion of Fiedler companion matrices , 2013 .
[72] Paul Van Dooren,et al. Backward Error Analysis of Polynomial Eigenvalue Problems Solved by Linearization , 2015, SIAM J. Matrix Anal. Appl..
[73] Jr. G. Forney,et al. Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .
[74] P. Dooren,et al. The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .
[75] Vanni Noferini,et al. Chebyshev rootfinding via computing eigenvalues of colleague matrices: when is it stable? , 2017, Math. Comput..
[76] Paul Van Dooren,et al. Polynomial Zigzag Matrices, Dual Minimal Bases, and the Realization of Completely Singular Polynomials , 2016 .
[77] Yuji Nakatsukasa,et al. On the stability of computing polynomial roots via confederate linearizations , 2015, Math. Comput..
[78] Nicholas J. Higham,et al. Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..
[79] Paul Van Dooren. Deadbeat control: A special inverse eigenvalue problem , 1984 .
[80] C. Loan. The ubiquitous Kronecker product , 2000 .
[81] Efstathios N. Antoniou,et al. A permuted factors approach for the linearization of polynomial matrices , 2011, Math. Control. Signals Syst..
[82] Nicholas J. Higham,et al. Backward Error of Polynomial Eigenproblems Solved by Linearization , 2007, SIAM J. Matrix Anal. Appl..
[83] Erik Elmroth,et al. A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997, SIAM J. Matrix Anal. Appl..
[84] S. Furtado,et al. Palindromic linearizations of a matrix polynomial of odd degreee obtained from Fiedler pencils with repetition , 2012 .