A 190 GHz VCO with Transformer-Based Push–Push Frequency Doubler in 40 nm CMOS

A 190 GHz voltage-controlled oscillator (VCO) with transformer-based push–push frequency doubler in 40 nm CMOS is presented. The layout optimization reduces the parasitics of the transistors. To achieve high output power at a target operating frequency of 190 GHz, design considerations are discussed and a transformer-based push–push frequency doubler is introduced. The digital controlled artificial dielectric transmission line is proposed in replacement of switched-capacitor arrays whose capacitance is more susceptible to process variation. The presented circuit occupies 390 × 430 µm2 die area including the pads and consumes 57.6 mW DC power from a 0.9 V power supply. The proposed VCO achieves a measured continuous tuning range from 181.9 to 195.5 GHz. The measured output power at 195.5 GHz is − 7.26 dBm which is estimated with the typical conversion loss of harmonic mixer. The measured phase noise at 10 MHz offset is − 97.18 dBc/Hz.

[1]  Philipp Hillger,et al.  A lens-integrated 430 GHz SiGe HBT source with up to −6.3 dBm radiated power , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[2]  Sorin P. Voinigescu,et al.  A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS , 2010, IEEE Journal of Solid-State Circuits.

[3]  Dwight L. Woolard,et al.  Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications? , 2005, Proceedings of the IEEE.

[4]  Zheng Wang,et al.  A CMOS 210-GHz Fundamental Transceiver With OOK Modulation , 2014, IEEE Journal of Solid-State Circuits.

[5]  Yan Zhao,et al.  A 288-GHz Lens-Integrated Balanced Triple-Push Source in a 65-nm CMOS Technology , 2013, IEEE Journal of Solid-State Circuits.

[6]  Patrick Reynaert,et al.  A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[7]  A. Thiede,et al.  Low power fundamental VCO design in D-band using 0.13 µm SiGe BiCMOS technology , 2015, 2015 German Microwave Conference.

[8]  Ehsan Afshari,et al.  High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach , 2011, IEEE Journal of Solid-State Circuits.

[9]  B. Heinemann,et al.  Solid-State Terahertz Superresolution Imaging Device in 130-nm SiGe BiCMOS Technology , 2017, IEEE Transactions on Microwave Theory and Techniques.

[10]  Songcheol Hong,et al.  A G-Band Standing-Wave Push–Push VCO Using a Transmission-Line Resonator , 2015, IEEE Transactions on Microwave Theory and Techniques.

[11]  E. Seok,et al.  192 GHz push–push VCO in 0.13 [micro sign]m CMOS , 2006 .

[12]  R.M. Weikle,et al.  Opening the terahertz window with integrated diode circuits , 2005, IEEE Journal of Solid-State Circuits.

[13]  Peter H. Siegel,et al.  THz Technology: An Overview , 2003 .

[14]  K. O. Kenneth,et al.  Millimeter-wave voltage-controlled oscillators in 0.13-μm CMOS technology , 2006, IEEE J. Solid State Circuits.

[15]  Eran Socher,et al.  Millimeter-wave CMOS digital controlled artificial dielectric differential mode transmission lines for reconfigurable ICs , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[16]  Ying Chen,et al.  Wideband Varactorless $LC$ VCO Using a Tunable Negative-Inductance Cell , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  B. Heinemann,et al.  0.3-THz SiGe-Based High-Efficiency Push–Push VCOs With > 1-mW Peak Output Power Employing Common-Mode Impedance Enhancement , 2018, IEEE Transactions on Microwave Theory and Techniques.

[18]  Baoyong Chi,et al.  A 180 GHz differential Colpitts VCO in 65 nm CMOS , 2016 .

[19]  E. Socher,et al.  A 159–169 GHz frequency source with 1.26 mW peak output power in 65 nm CMOS , 2013, 2013 European Microwave Integrated Circuit Conference.

[20]  Omeed Momeni,et al.  A 190-GHz VCO With 20.7% Tuning Range Employing an Active Mode Switching Block in a 130 nm SiGe BiCMOS , 2017, IEEE Journal of Solid-State Circuits.

[21]  Juergen Hasch,et al.  A Study of SiGe HBT Signal Sources in the 220–330-GHz Range , 2013, IEEE Journal of Solid-State Circuits.

[22]  B. Chi,et al.  A 152-GHz OOK Transmitter With 3-dBm Output Power in 65-nm CMOS , 2017, IEEE Microwave and Wireless Components Letters.