A 190 GHz VCO with Transformer-Based Push–Push Frequency Doubler in 40 nm CMOS
暂无分享,去创建一个
[1] Philipp Hillger,et al. A lens-integrated 430 GHz SiGe HBT source with up to −6.3 dBm radiated power , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).
[2] Sorin P. Voinigescu,et al. A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS , 2010, IEEE Journal of Solid-State Circuits.
[3] Dwight L. Woolard,et al. Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications? , 2005, Proceedings of the IEEE.
[4] Zheng Wang,et al. A CMOS 210-GHz Fundamental Transceiver With OOK Modulation , 2014, IEEE Journal of Solid-State Circuits.
[5] Yan Zhao,et al. A 288-GHz Lens-Integrated Balanced Triple-Push Source in a 65-nm CMOS Technology , 2013, IEEE Journal of Solid-State Circuits.
[6] Patrick Reynaert,et al. A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.
[7] A. Thiede,et al. Low power fundamental VCO design in D-band using 0.13 µm SiGe BiCMOS technology , 2015, 2015 German Microwave Conference.
[8] Ehsan Afshari,et al. High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach , 2011, IEEE Journal of Solid-State Circuits.
[9] B. Heinemann,et al. Solid-State Terahertz Superresolution Imaging Device in 130-nm SiGe BiCMOS Technology , 2017, IEEE Transactions on Microwave Theory and Techniques.
[10] Songcheol Hong,et al. A G-Band Standing-Wave Push–Push VCO Using a Transmission-Line Resonator , 2015, IEEE Transactions on Microwave Theory and Techniques.
[11] E. Seok,et al. 192 GHz push–push VCO in 0.13 [micro sign]m CMOS , 2006 .
[12] R.M. Weikle,et al. Opening the terahertz window with integrated diode circuits , 2005, IEEE Journal of Solid-State Circuits.
[13] Peter H. Siegel,et al. THz Technology: An Overview , 2003 .
[14] K. O. Kenneth,et al. Millimeter-wave voltage-controlled oscillators in 0.13-μm CMOS technology , 2006, IEEE J. Solid State Circuits.
[15] Eran Socher,et al. Millimeter-wave CMOS digital controlled artificial dielectric differential mode transmission lines for reconfigurable ICs , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.
[16] Ying Chen,et al. Wideband Varactorless $LC$ VCO Using a Tunable Negative-Inductance Cell , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.
[17] B. Heinemann,et al. 0.3-THz SiGe-Based High-Efficiency Push–Push VCOs With > 1-mW Peak Output Power Employing Common-Mode Impedance Enhancement , 2018, IEEE Transactions on Microwave Theory and Techniques.
[18] Baoyong Chi,et al. A 180 GHz differential Colpitts VCO in 65 nm CMOS , 2016 .
[19] E. Socher,et al. A 159–169 GHz frequency source with 1.26 mW peak output power in 65 nm CMOS , 2013, 2013 European Microwave Integrated Circuit Conference.
[20] Omeed Momeni,et al. A 190-GHz VCO With 20.7% Tuning Range Employing an Active Mode Switching Block in a 130 nm SiGe BiCMOS , 2017, IEEE Journal of Solid-State Circuits.
[21] Juergen Hasch,et al. A Study of SiGe HBT Signal Sources in the 220–330-GHz Range , 2013, IEEE Journal of Solid-State Circuits.
[22] B. Chi,et al. A 152-GHz OOK Transmitter With 3-dBm Output Power in 65-nm CMOS , 2017, IEEE Microwave and Wireless Components Letters.