Redox Imbalance Underlies the Fitness Defect Associated with Inactivation of the Pta-AckA Pathway in Staphylococcus aureus.

The phosphotransacetylase-acetate kinase (Pta-AckA) pathway is thought to be a vital ATP generating pathway for Staphylococcus aureus. Disruption of the Pta-AckA pathway during overflow metabolism causes significant reduction in growth rate and viability, albeit not due to intracellular ATP depletion. Here, we demonstrate that toxicity associated with inactivation of the Pta-AckA pathway resulted from an altered intracellular redox environment. Growth of the pta and ackA mutants under anaerobic conditions partially restored cell viability. NMR metabolomics analyses and (13)C6-glucose metabolism tracing experiments revealed the activity of multiple pathways that promote redox (NADH/NAD(+)) turnover to be enhanced in the pta and ackA mutants during anaerobic growth. Restoration of redox homeostasis in the pta mutant by overexpressing l- lactate dehydrogenase partially restored its viability under aerobic conditions. Together, our findings suggest that during overflow metabolism, the Pta-AckA pathway plays a critical role in preventing cell viability defects by promoting intracellular redox homeostasis.

[1]  S. Ahn,et al.  Genetics and Physiology of Acetate Metabolism by the Pta-Ack Pathway of Streptococcus mutans , 2015, Applied and Environmental Microbiology.

[2]  Robert Powers,et al.  Influence of Iron and Aeration on Staphylococcus aureus Growth, Metabolism, and Transcription , 2014, Journal of bacteriology.

[3]  Robert Powers,et al.  MVAPACK: A Complete Data Handling Package for NMR Metabolomics , 2014, ACS chemical biology.

[4]  R. Powers,et al.  Simultaneous Phase and Scatter Correction for NMR Datasets. , 2014, Chemometrics and intelligent laboratory systems : an international journal sponsored by the Chemometrics Society.

[5]  R. Powers,et al.  Revisiting Protocols for the NMR Analysis of Bacterial Metabolomes. , 2013, Journal of integrated OMICS.

[6]  R. Powers,et al.  Inactivation of the Pta-AckA Pathway Causes Cell Death in Staphylococcus aureus , 2013, Journal of bacteriology.

[7]  A. Neves,et al.  Effect of Oxygen on Glucose Metabolism: Utilization of Lactate in Staphylococcus Aureus as Revealed by In Vivo NMR Studies , 2013, PloS one.

[8]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[9]  C. Rubens,et al.  Changes in the Staphylococcus aureus Transcriptome during Early Adaptation to the Lung , 2012, PloS one.

[10]  H. Rohde,et al.  CcpA coordinates central metabolism and biofilm formation in Staphylococcus epidermidis. , 2012, Microbiology.

[11]  Jingyu Chen,et al.  Metabolic profiling of Staphylococcus aureus cultivated under aerobic and anaerobic conditions with (1)H NMR-based nontargeted analysis. , 2012, Canadian journal of microbiology.

[12]  M. Taya,et al.  Accumulation of pyruvate by changing the redox status in Escherichia coli , 2012, Biotechnology Letters.

[13]  Robert Powers,et al.  NMR analysis of a stress response metabolic signaling network. , 2011, Journal of proteome research.

[14]  Manuel Liebeke,et al.  A protocol for the investigation of the intracellular Staphylococcus aureus metabolome. , 2010, Analytical biochemistry.

[15]  F Savorani,et al.  icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. , 2010, Journal of magnetic resonance.

[16]  Henry F. Chambers,et al.  Waves of resistance: Staphylococcus aureus in the antibiotic era , 2009, Nature Reviews Microbiology.

[17]  F. Lowy Staphylococcus aureus infections. , 2009, The New England journal of medicine.

[18]  B. Sharma-Kuinkel,et al.  The Staphylococcus aureus LytSR Two-Component Regulatory System Affects Biofilm Formation , 2009, Journal of bacteriology.

[19]  R. Proctor,et al.  At the Crossroads of Bacterial Metabolism and Virulence Factor Synthesis in Staphylococci , 2009, Microbiology and Molecular Biology Reviews.

[20]  P. François,et al.  Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus , 2009, BMC Microbiology.

[21]  Johan Trygg,et al.  CV‐ANOVA for significance testing of PLS and OPLS® models , 2008 .

[22]  Elena Tsiporkova,et al.  NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. , 2008, Analytical chemistry.

[23]  A. Sonenshein,et al.  Staphylococcus aureus CodY Negatively Regulates Virulence Gene Expression , 2007, Journal of bacteriology.

[24]  A. Sonenshein,et al.  Control of key metabolic intersections in Bacillus subtilis , 2007, Nature Reviews Microbiology.

[25]  S. Fuchs,et al.  Anaerobic Gene Expression in Staphylococcus aureus , 2007, Journal of bacteriology.

[26]  C. Wolz,et al.  Staphylococcus aureus CcpA Affects Virulence Determinant Production and Antibiotic Resistance , 2006, Antimicrobial Agents and Chemotherapy.

[27]  A. Simpson,et al.  Purge NMR: effective and easy solvent suppression. , 2005, Journal of magnetic resonance.

[28]  A. Wolfe The Acetate Switch , 2005, Microbiology and Molecular Biology Reviews.

[29]  H. Wertheim,et al.  Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers , 2004, The Lancet.

[30]  Yi-Zeng Liang,et al.  Monte Carlo cross‐validation for selecting a model and estimating the prediction error in multivariate calibration , 2004 .

[31]  R. Novick Autoinduction and signal transduction in the regulation of staphylococcal virulence , 2003, Molecular microbiology.

[32]  Alan J Wolfe,et al.  Evidence that acetyl phosphate functions as a global signal during biofilm development , 2003, Molecular microbiology.

[33]  Jae-Gu Pan,et al.  Acetate Metabolism in a pta Mutant ofEscherichia coli W3110: Importance of Maintaining Acetyl Coenzyme A Flux for Growth and Survival , 1999, Journal of bacteriology.

[34]  R. Daum,et al.  Cloning of the Staphylococcus aureus ddh gene encoding NAD+-dependent D-lactate dehydrogenase and insertional inactivation in a glycopeptide-resistant isolate , 1997, Journal of bacteriology.

[35]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[36]  M. Domach,et al.  Simple constrained‐optimization view of acetate overflow in E. coli , 1990, Biotechnology and bioengineering.

[37]  E I Garvie,et al.  Bacterial lactate dehydrogenases. , 1980, Microbiological reviews.

[38]  C. Clemente,et al.  Multiple Forms of Lactate Dehydrogenase in Staphylococcus aureus , 1969, Journal of bacteriology.

[39]  R. S. Hanson,et al.  Effect of Different Nutritional Conditions on the Synthesis of Tricarboxylic Acid Cycle Enzymes , 1967, Journal of bacteriology.

[40]  PETER MITCHELL,et al.  Chemiosmotic Hypothesis of Oxidative Phosphorylation , 1967, Nature.

[41]  A. Sonenshein,et al.  Regulating the Intersection of Metabolism and Pathogenesis in Gram-positive Bacteria. , 2015, Microbiology spectrum.

[42]  Tetsuya Sakurai,et al.  PRIMe: A Web Site That Assembles Tools for Metabolomics and Transcriptomics , 2008, Silico Biol..

[43]  Robert Powers,et al.  Negative impact of noise on the principal component analysis of NMR data. , 2006, Journal of magnetic resonance.

[44]  H. Gresham,et al.  Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. , 2004, FEMS immunology and medical microbiology.

[45]  Bruce A Johnson,et al.  Using NMRView to visualize and analyze the NMR spectra of macromolecules. , 2004, Methods in molecular biology.

[46]  H G Crabtree,et al.  Observations on the carbohydrate metabolism of tumours. , 1929, The Biochemical journal.