Transforming Growth Factor type beta and Smad family signaling in stem cell function.

[1]  Michel Sadelain,et al.  Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation , 2009, Proceedings of the National Academy of Sciences.

[2]  Hitoshi Niwa,et al.  A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells , 2009, Nature.

[3]  C. Lim,et al.  Regulated Fluctuations in Nanog Expression Mediate Cell Fate Decisions in Embryonic Stem Cells , 2009, PLoS biology.

[4]  M. Baron,et al.  Embryonic fates for extraembryonic lineages: New perspectives , 2009, Journal of cellular biochemistry.

[5]  Roger A. Pedersen,et al.  Early Cell Fate Decisions of Human Embryonic Stem Cells and Mouse Epiblast Stem Cells Are Controlled by the Same Signalling Pathways , 2009, PloS one.

[6]  David J. Mooney,et al.  Growth Factors, Matrices, and Forces Combine and Control Stem Cells , 2009, Science.

[7]  L. David,et al.  Emerging role of bone morphogenetic proteins in angiogenesis. , 2009, Cytokine & growth factor reviews.

[8]  K. Mesbah,et al.  Signaling Pathways Controlling Second Heart Field Development , 2009, Circulation research.

[9]  Huck-Hui Ng,et al.  Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. , 2009, Cell stem cell.

[10]  C. Heldin,et al.  Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. , 2009, Current opinion in cell biology.

[11]  C. Hill,et al.  Tgf-beta superfamily signaling in embryonic development and homeostasis. , 2009, Developmental cell.

[12]  M. Romano Targeting TGFbeta-mediated processes in cancer. , 2009, Current opinion in drug discovery & development.

[13]  M. Tomishima,et al.  Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling , 2009, Nature Biotechnology.

[14]  Roberto Mayor,et al.  Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction , 2009, Development.

[15]  L. Attisano,et al.  A concentration-dependent endocytic trap and sink mechanism converts Bmper from an activator to an inhibitor of Bmp signaling , 2009, The Journal of cell biology.

[16]  Alexander Meissner,et al.  Induced pluripotent stem cells: current progress and potential for regenerative medicine. , 2009, Trends in molecular medicine.

[17]  Samy Lamouille,et al.  TGF-β-induced epithelial to mesenchymal transition , 2009, Cell Research.

[18]  D. Hess,et al.  Amnion: A Potent Graft Source for Cell Therapy in Stroke , 2009, Cell transplantation.

[19]  Konstantinos J. Mavrakis,et al.  Graded Smad2/3 Activation Is Converted Directly into Levels of Target Gene Expression in Embryonic Stem Cells , 2009, PloS one.

[20]  L. Gunhaga,et al.  Wnt-regulated temporal control of BMP exposure directs the choice between neural plate border and epidermal fate , 2009, Development.

[21]  D. Melton,et al.  Nuclear Reprogramming in Cells , 2008, Science.

[22]  M. Grompe,et al.  Generation and Regeneration of Cells of the Liver and Pancreas , 2008, Science.

[23]  Y. Inoue,et al.  Regulation of TGF‐β family signaling by E3 ubiquitin ligases , 2008, Cancer science.

[24]  Hsu-hsin Chen,et al.  The Growth Factor Environment Defines Distinct Pluripotent Ground States in Novel Blastocyst-Derived Stem Cells , 2008, Cell.

[25]  K. Miyazono,et al.  Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway , 2008, Oncogene.

[26]  F. Tang,et al.  Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. , 2008, Cell stem cell.

[27]  Shigeo Saito,et al.  Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro , 2008, Human Cell.

[28]  J. Bertram,et al.  Bone morphogenetic protein signaling in the developing kidney: present and future. , 2008, Differentiation; research in biological diversity.

[29]  Xuedong Liu,et al.  Decoding the quantitative nature of TGF-beta/Smad signaling. , 2008, Trends in cell biology.

[30]  M. Pisano,et al.  BMP signaling dynamics in embryonic orofacial tissue , 2008, Journal of cellular physiology.

[31]  Xin-Hua Feng,et al.  To (TGF)beta or not to (TGF)beta: fine-tuning of Smad signaling via post-translational modifications. , 2008, Cellular signalling.

[32]  P. Dijke,et al.  Role of TGF- β in the Tumor Stroma , 2008 .

[33]  C. Please,et al.  Stochasticity and the Molecular Mechanisms of Induced Pluripotency , 2008, PloS one.

[34]  R. Flavell,et al.  TGF-β: A Master of All T Cell Trades , 2008, Cell.

[35]  G. Pan,et al.  NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. , 2008, Cell stem cell.

[36]  R. Peterson,et al.  Dorsomorphin, a Selective Small Molecule Inhibitor of BMP Signaling, Promotes Cardiomyogenesis in Embryonic Stem Cells , 2008, PloS one.

[37]  M. Buckingham,et al.  Skeletal muscle stem cells. , 2008, Current opinion in genetics & development.

[38]  A. Kaye,et al.  Transforming growth factor-beta (TGF-β) and brain tumours , 2008, Journal of Clinical Neuroscience.

[39]  I. Black,et al.  Fate of amnion-derived stem cells transplanted to the fetal rat brain: migration, survival and differentiation , 2008, Journal of cellular and molecular medicine.

[40]  J. Thomson,et al.  Pluripotent stem cell lines. , 2008, Genes & development.

[41]  Li-Fang Chu,et al.  Ronin Is Essential for Embryogenesis and the Pluripotency of Mouse Embryonic Stem Cells , 2008, Cell.

[42]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[43]  Marianne Bronner-Fraser,et al.  A gene regulatory network orchestrates neural crest formation , 2008, Nature Reviews Molecular Cell Biology.

[44]  V. Kaartinen,et al.  Functional redundancy of TGF-beta family type I receptors and receptor-Smads in mediating anti-Mullerian hormone-induced Mullerian duct regression in the mouse. , 2008, Biology of reproduction.

[45]  M. Pucéat Protocols for cardiac differentiation of embryonic stem cells. , 2008, Methods.

[46]  Y. Sasai,et al.  Ectodermal Factor Restricts Mesoderm Differentiation by Inhibiting p53 , 2008, Cell.

[47]  S. Piccolo p53 Regulation Orchestrates the TGF-β Response , 2008, Cell.

[48]  Yukio Nakamura,et al.  Induced in vitro differentiation of neural-like cells from human amnion-derived fibroblast-like cells , 2008, Human Cell.

[49]  T. Yamashita,et al.  BMP inhibition enhances axonal growth and functional recovery after spinal cord injury , 2008, Journal of neurochemistry.

[50]  J. Reiter,et al.  Neur-ons and neur-offs: regulators of neural induction in vertebrate embryos and embryonic stem cells. , 2008, Human molecular genetics.

[51]  S. Wahl,et al.  TGF-beta and tumors--an ill-fated alliance. , 2008, Current opinion in immunology.

[52]  Michael J Yost,et al.  Novel therapies for scar reduction and regenerative healing of skin wounds. , 2008, Trends in biotechnology.

[53]  S. Orkin,et al.  An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells , 2008, Cell.

[54]  Michael O. Dorschner,et al.  Oct4 dependence of chromatin structure within the extended Nanog locus in ES cells. , 2008, Genes & development.

[55]  J. C. McDermott,et al.  Transforming growth factor-β and myostatin signaling in skeletal muscle , 2008 .

[56]  Bing Ren,et al.  Unraveling epigenetic regulation in embryonic stem cells. , 2008, Cell stem cell.

[57]  Göran Karlsson,et al.  Signaling pathways governing stem-cell fate. , 2008, Blood.

[58]  C. Mummery,et al.  Adult Neurogenesis Requires Smad4-Mediated Bone Morphogenic Protein Signaling in Stem Cells , 2008, The Journal of Neuroscience.

[59]  Yuri Kotliarov,et al.  Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. , 2008, Cancer cell.

[60]  Richard A Flavell,et al.  ‘Yin–Yang’ functions of transforming growth factor‐β and T regulatory cells in immune regulation , 2007, Immunological reviews.

[61]  S. Whittemore,et al.  Bone Morphogenetic Protein Signaling and Olig1/2 Interact to Regulate the Differentiation and Maturation of Adult Oligodendrocyte Precursor Cells , 2007, Stem cells.

[62]  Bernhard Schmierer,et al.  TGFβ–SMAD signal transduction: molecular specificity and functional flexibility , 2007, Nature Reviews Molecular Cell Biology.

[63]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[64]  E. Robertis,et al.  Integrating Patterning Signals: Wnt/GSK3 Regulates the Duration of the BMP/Smad1 Signal , 2007, Cell.

[65]  F. Guillemot Spatial and temporal specification of neural fates by transcription factor codes , 2007, Development.

[66]  P. Dijke,et al.  Extracellular control of TGFβ signalling in vascular development and disease , 2007, Nature Reviews Molecular Cell Biology.

[67]  Martin M. Matzuk,et al.  Conditional Deletion of Smad1 and Smad5 in Somatic Cells of Male and Female Gonads Leads to Metastatic Tumor Development in Mice , 2007, Molecular and Cellular Biology.

[68]  M. Buckingham,et al.  The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. , 2007, Annual review of cell and developmental biology.

[69]  C. Heldin,et al.  Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression , 2007, Cancer science.

[70]  Lila R Collins,et al.  Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts , 2007, Nature Biotechnology.

[71]  R. Derynck,et al.  Differentiation plasticity regulated by TGF-β family proteins in development and disease , 2007, Nature Cell Biology.

[72]  L. Mishra,et al.  TGF-β Signaling in Development , 2007, Science's STKE.

[73]  M. Trotter,et al.  Derivation of pluripotent epiblast stem cells from mammalian embryos , 2007, Nature.

[74]  R. McKay,et al.  New cell lines from mouse epiblast share defining features with human embryonic stem cells , 2007, Nature.

[75]  M. Takenaga,et al.  Regulated Nodal signaling promotes differentiation of the definitive endoderm and mesoderm from ES cells , 2007, Journal of Cell Science.

[76]  S. Yamanaka Strategies and new developments in the generation of patient-specific pluripotent stem cells. , 2007, Cell stem cell.

[77]  M. Götz,et al.  Signaling in adult neurogenesis: from stem cell niche to neuronal networks , 2007, Current Opinion in Neurobiology.

[78]  Elizabeth Gould,et al.  How widespread is adult neurogenesis in mammals? , 2007, Nature Reviews Neuroscience.

[79]  Ali H. Brivanlou,et al.  Signaling Pathways in Cancer and Embryonic Stem Cells , 2007, Stem Cell Reviews.

[80]  Leonid A. Mirny,et al.  Zfx Controls the Self-Renewal of Embryonic and Hematopoietic Stem Cells , 2007, Cell.

[81]  E. Kremmer,et al.  CHD4/Mi-2beta activity is required for the positioning of the mesoderm/neuroectoderm boundary in Xenopus. , 2007, Genes & development.

[82]  P. Dijke,et al.  Negative regulation of TGF-β receptor/Smad signal transduction , 2007 .

[83]  O. Brüstle,et al.  Bone Morphogenetic Protein‐Mediated Modulation of Lineage Diversification During Neural Differentiation of Embryonic Stem Cells , 2007, Stem cells.

[84]  Hitoshi Niwa,et al.  How is pluripotency determined and maintained? , 2007, Development.

[85]  Hiroshi I. Suzuki,et al.  Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells , 2006, Journal of Cell Science.

[86]  G. Broggi,et al.  Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells , 2006, Nature.

[87]  M. Buckingham Myogenic progenitor cells and skeletal myogenesis in vertebrates. , 2006, Current opinion in genetics & development.

[88]  F. Hoffmann,et al.  Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA. , 2006, Molecular biology of the cell.

[89]  E. Bosman,et al.  Smad5 determines murine amnion fate through the control of bone morphogenetic protein expression and signalling levels , 2006, Development.

[90]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[91]  Y. Henis,et al.  Different Routes of Bone Morphogenic Protein (BMP) Receptor Endocytosis Influence BMP Signaling , 2006, Molecular and Cellular Biology.

[92]  L. Attisano,et al.  Ubiquitin-dependent regulation of TGFbeta signaling in cancer. , 2006, Neoplasia.

[93]  Fred H. Gage,et al.  Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells , 2006, Proceedings of the National Academy of Sciences.

[94]  Dinender K. Singla,et al.  wnt3a but not wnt11 supports self-renewal of embryonic stem cells. , 2006, Biochemical and biophysical research communications.

[95]  S. Karlsson,et al.  A Road Map Toward Defining the Role of Smad Signaling in Hematopoietic Stem Cells , 2006, Stem cells.

[96]  E. D. Robertis,et al.  Spemann's organizer and self-regulation in amphibian embryos , 2006, Nature Reviews Molecular Cell Biology.

[97]  X. Chen,et al.  The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells , 2006, Nature Genetics.

[98]  F. Gage,et al.  Maintenance of embryonic stem cell pluripotency by Nanog-mediated reversal of mesoderm specification , 2006, Nature Clinical Practice Cardiovascular Medicine.

[99]  Angshumoy Roy,et al.  Deconstructing mammalian reproduction: using knockouts to define fertility pathways. , 2006, Reproduction.

[100]  D. van der Kooy,et al.  Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences , 2006, The Journal of cell biology.

[101]  T. Magnuson,et al.  Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. , 2005, Developmental biology.

[102]  Tsutomu Chiba,et al.  Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells , 2005, Nature Biotechnology.

[103]  Toshio Miki,et al.  Stem Cell Characteristics of Amniotic Epithelial Cells , 2005, Stem cells.

[104]  R. Derynck,et al.  SPECIFICITY AND VERSATILITY IN TGF-β SIGNALING THROUGH SMADS , 2005 .

[105]  P. Zandstra,et al.  Culture development for human embryonic stem cell propagation: molecular aspects and challenges. , 2005, Current opinion in biotechnology.

[106]  R. Pedersen,et al.  Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells , 2005, Journal of Cell Science.

[107]  Chikara Furusawa,et al.  Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture , 2005, Development.

[108]  Jonas Larsson,et al.  The role of Smad signaling in hematopoiesis , 2005, Oncogene.

[109]  P. Courtoy,et al.  Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. , 2005, Genes & development.

[110]  J. Rubenstein,et al.  Pax6 Is Required for Making Specific Subpopulations of Granule and Periglomerular Neurons in the Olfactory Bulb , 2005, The Journal of Neuroscience.

[111]  M. Götz,et al.  Neuronal fate determinants of adult olfactory bulb neurogenesis , 2005, Nature Neuroscience.

[112]  S. Vukicevic,et al.  Bone morphogenetic proteins in development and homeostasis of kidney. , 2005, Cytokine & growth factor reviews.

[113]  T. Iwama,et al.  Culture method for the induction of neurospheres from mouse embryonic stem cells by coculture with PA6 stromal cells , 2005, Journal of neuroscience research.

[114]  T. Blundell,et al.  Functional specificity of the Xenopus T-domain protein Brachyury is conferred by its ability to interact with Smad1. , 2005, Developmental cell.

[115]  Ariel J. Levine,et al.  TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells , 2005 .

[116]  Jeffrey L. Wrana,et al.  Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling , 2005, Nature Reviews Molecular Cell Biology.

[117]  François Guillemot,et al.  Mash1 specifies neurons and oligodendrocytes in the postnatal brain , 2004, The EMBO journal.

[118]  M. Matzuk,et al.  Genetic models for transforming growth factor β superfamily signaling in ovarian follicle development , 2004, Molecular and Cellular Endocrinology.

[119]  Holm Zaehres,et al.  LIF/STAT3 Signaling Fails to Maintain Self‐Renewal of Human Embryonic Stem Cells , 2004, Stem cells.

[120]  A. Bergamaschi,et al.  TGFβ/BMP activate the smooth muscle/bone differentiation programs in mesoangioblasts , 2004, Journal of Cell Science.

[121]  N. Nakatsuji,et al.  STAT3 Is Dispensable for Maintenance of Self‐Renewal in Nonhuman Primate Embryonic Stem Cells , 2004, Stem cells.

[122]  C. Mummery,et al.  BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. , 2004, Genes & development.

[123]  Ana D. Lopez,et al.  Maintenance of Pluripotency in Human Embryonic Stem Cells Is STAT3 Independent , 2004, Stem cells.

[124]  T. Nikaido,et al.  Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. , 2004, Cell structure and function.

[125]  A. Roberts,et al.  SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. , 2004, Molecular pharmacology.

[126]  J. Nichols,et al.  BMP Induction of Id Proteins Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in Collaboration with STAT3 , 2003, Cell.

[127]  J. Brennan,et al.  Control of early anterior-posterior patterning in the mouse embryo by TGF-beta signalling. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[128]  R. Roy,et al.  "Amnion Bank"--the use of long term glycerol preserved amniotic membranes in the management of superficial and superficial partial thickness burns. , 2003, Burns : journal of the International Society for Burn Injuries.

[129]  Jeffrey L. Wrana,et al.  Distinct endocytic pathways regulate TGF-β receptor signalling and turnover , 2003, Nature Cell Biology.

[130]  Austin G Smith,et al.  Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture , 2003, Nature Biotechnology.

[131]  Y. Matsui,et al.  SMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast , 2002, Mechanisms of Development.

[132]  B. Olson,et al.  Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. , 2002, Molecular pharmacology.

[133]  A. Reith,et al.  SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. , 2002, Molecular pharmacology.

[134]  Ali H. Brivanlou,et al.  Neural induction, the default model and embryonic stem cells , 2002, Nature Reviews Neuroscience.

[135]  E. Robertson,et al.  Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. , 2001, Development.

[136]  B. Hogan,et al.  Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. , 2001, Genes & development.

[137]  M. Matzuk,et al.  Smad5 is required for mouse primordial germ cell development , 2001, Mechanisms of Development.

[138]  J. García-Verdugo,et al.  Noggin Antagonizes BMP Signaling to Create a Niche for Adult Neurogenesis , 2000, Neuron.

[139]  E. D. De Robertis,et al.  Endodermal Nodal-related signals and mesoderm induction in Xenopus. , 2000, Development.

[140]  G. Cossu,et al.  Wnt signaling and the activation of myogenesis in mammals , 1999, The EMBO journal.

[141]  G. Martin,et al.  Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. , 1999, Genes & development.

[142]  K. Zaret,et al.  Initiation of mammalian liver development from endoderm by fibroblast growth factors. , 1999, Science.

[143]  T. Bouwmeester,et al.  The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals , 1999, Nature.

[144]  Liliana Attisano,et al.  SARA, a FYVE Domain Protein that Recruits Smad2 to the TGFβ Receptor , 1998, Cell.

[145]  J. Thomson,et al.  Embryonic stem cell lines derived from human blastocysts. , 1998, Science.

[146]  R. Thangavel,et al.  Expression of markers for both neuronal and glial cells in human amniotic epithelial cells , 1996, Neuroscience Letters.

[147]  M. Sharpe,et al.  Scatter factor/hepatocyte growth factor is essential for liver development , 1995, Nature.

[148]  Linda Lowe,et al.  Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation , 1993, Nature.

[149]  University of Zurich Zurich Open Repository and Archive , 2010 .

[150]  Ye-Guang Chen Endocytic regulation of TGF-β signaling , 2009, Cell Research.

[151]  K. Miyazono,et al.  Roles of TGF-β family signaling in stem cell renewal and differentiation , 2009, Cell Research.

[152]  Marie-José Goumans,et al.  TGF-β signaling in vascular biology and dysfunction , 2009, Cell Research.

[153]  C. Hill Nucleocytoplasmic shuttling of Smad proteins , 2009, Cell Research.

[154]  David Padua,et al.  Roles of TGFβ in metastasis , 2009, Cell Research.

[155]  Charles C Hong,et al.  Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. , 2008, Nature chemical biology.

[156]  W. Harris,et al.  Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. , 2008, Developmental biology.

[157]  H. Moses,et al.  Transforming growth factor beta: tumor suppressor or promoter? Are host immune cells the answer? , 2008, Cancer research.

[158]  D. Stolz,et al.  Short communication Identification of stem cell marker-positive cells by immunofluorescence in term human amnion , 2007 .

[159]  A. Moorman,et al.  www.elsevier.com/locate/cardiores Review Role of bone morphogenetic proteins in cardiac differentiation , 2006 .

[160]  D. Abrous,et al.  Adult neurogenesis: from precursors to network and physiology. , 2005, Physiological reviews.

[161]  M. Rudnicki,et al.  Cellular and molecular regulation of muscle regeneration. , 2004, Physiological reviews.

[162]  Y. Saijoh,et al.  Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. , 2000, Molecular cell.