A product recommendation system based on adjacency data

Recommendation systems are developed to overcome the problems of selection and to promote intention to use. In this study, we propose a recommendation system using adjacency data according to user's behavior over time. For this, the product adjacencies are identified from the adjacency matrix based on graph theory. This research finds that there is a trend in the users' behavior over time though product adjacency fluctuates over time. The system is tested on its usability. The tests show that implementing this recommendation system increases users' intention to purchase and reduces the search time.