Minimizing makespan subject to minimum flowtime on two identical parallel machines
暂无分享,去创建一个
[1] William L. Maxwell,et al. Theory of scheduling , 1967 .
[2] A. Nagar,et al. Multiple and bicriteria scheduling : A literature survey , 1995 .
[3] Paolo Toth,et al. Approximation schemes for the subset-sum problem: Survey and experimental analysis , 1985 .
[4] P. Pardalos. Complexity in numerical optimization , 1993 .
[5] Ronald L. Graham,et al. Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.
[6] George L. Vairaktarakis,et al. Complexity of Single Machine Hierarchical Scheduling: A Survey , 1993 .
[7] Joseph Y.-T. Leung,et al. Minimizing Schedule Length Subject to Minimum Flow Time , 1989, SIAM J. Comput..
[8] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[9] Johnny Wong,et al. Makespan minimization for m parallel identical processors , 1995 .
[10] X. Chao,et al. Operations scheduling with applications in manufacturing and services , 1999 .
[11] Michael Pinedo,et al. On the Minimization of the Makespan Subject to Flowtime Optimality , 1993, Oper. Res..
[12] Edward G. Coffman,et al. Algorithms minimizing mean flow time: schedule-length properties , 1976, Acta Informatica.
[13] R. Bulfin,et al. Complexity of single machine, multi-criteria scheduling problems , 1993 .
[14] Edward G. Coffman,et al. An Application of Bin-Packing to Multiprocessor Scheduling , 1978, SIAM J. Comput..
[15] Mauro Dell'Amico,et al. Optimal Scheduling of Tasks on Identical Parallel Processors , 1995, INFORMS J. Comput..