Conditional logic and the Principle of Entropy
暂无分享,去创建一个
[1] Gabriele Kern-Isberner,et al. Characterizing the Principle of Minimum Cross-Entropy Within a Conditional-Logical Framework , 1998, Artif. Intell..
[2] M. Donald. On the relative entropy , 1986 .
[3] Wilhelm Rödder,et al. Coherent Knowledge Processing at Maximum Entropy by SPIRIT , 1996, UAI.
[4] P. M. Williams. Bayesian Conditionalisation and the Principle of Minimum Information , 1980, The British Journal for the Philosophy of Science.
[5] John E. Shore,et al. Relative Entropy, Probabilistic Inference, and AI , 1985, UAI.
[6] Patrick Brézillon,et al. Lecture Notes in Artificial Intelligence , 1999 .
[7] I. Csiszár. $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .
[8] A. Tarski,et al. Wahrscheinlichkeitslehre und mehrwertige Logik: , 1935 .
[9] Frans Voorbraak,et al. Probabilistic Belief Expansion and Conditioning , 1996 .
[10] Wilhelm Rödder,et al. Entropy-driven inference and inconsistency , 1999, AISTATS.
[11] Judea Pearl,et al. Probabilistic reasoning in intelligent systems , 1988 .
[12] J. Hintikka,et al. Aspects of Inductive Logic. , 1968 .
[13] Gabriele Kern-Isberner. A Logically Sound Method for Uncertain Reasoning with Quantified Conditionals , 1997, ECSQARU-FAPR.
[14] P. G. Calabrese,et al. A Theory of Conditional Information with Applications , 1994, IEEE Trans. Syst. Man Cybern. Syst..
[15] N. Rescher. Many Valued Logic , 1969 .
[16] Rodney W. Johnson,et al. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.
[17] Andrew P. Sage,et al. Uncertainty in Artificial Intelligence , 1987, IEEE Transactions on Systems, Man, and Cybernetics.
[18] Carl-Heinz Meyer. Korrektes Schließen bei unvollständiger Information: Anwendung des Prinzips der maximalen Entropie in einem probabilistischen Expertensystem , 1998 .
[19] Madan M. Gupta,et al. Conditional Logic in Expert Systems , 1991 .
[20] Didier Dubois,et al. The logical view of conditioning and its application to possibility and evidence theories , 1990, Int. J. Approx. Reason..
[21] I. Csiszár. Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .
[22] Camilla Schwind,et al. Schließen bei unsicherem Wissen in der Künstlichen Intelligenz , 1992 .
[23] P. Suppes. Probabilistic Inference and the Concept of Total Evidence , 1969 .
[24] Jeff B. Paris,et al. A note on the inevitability of maximum entropy , 1990, Int. J. Approx. Reason..
[25] P. Calabrese. Deduction and Inference Using Conditional Logic and Probability , 1991 .
[26] Gabriele Kern-Isberner,et al. Representation and Extraction of Information by Probabilistic Logic , 1996, Inf. Syst..
[27] Atwell R. Turquette,et al. On the Many-Valued Logics , 1941 .
[28] David J. Spiegelhalter,et al. Local computations with probabilities on graphical structures and their application to expert systems , 1990 .