The existence of noncollision singularities in newtonian systems
暂无分享,去创建一个
[1] R. Devaney. Triple collision in the planar isosceles three body problem , 1980 .
[2] R. Moeckel. Heteroclinic Phenomena in the Isosceles Three-Body Problem , 1984 .
[3] Jürgen Moser,et al. Lectures on Celestial Mechanics , 1971 .
[4] Joseph L. Gerver. The existence of pseudocollisions in the plane , 1991 .
[5] Robert L. Devaney,et al. Singularities in Classical Mechanical Systems , 1981 .
[6] R. Moeckel. ORBITS OF THE THREE-BODY PROBLEM WHICH PASS INFINITELY CLOSE TO TRIPLE COLLISION , 1981 .
[7] P. Painlevé. Leçons sur la théorie analytique des équations différentielles : professées à Stockholm(1895) , 1897 .
[8] Richard McGehee,et al. Solutions of the collinear four body problem which become unbounded in finite time , 1975 .
[9] Donald G. Saari,et al. Singularities of the n-body problem. I , 1968 .
[10] D. Saari. The manifold structure for collision and for hyperbolic-parabolic orbits in the n-body problem☆ , 1984 .
[11] D. Saari. Singularities and collisions of Newtonian gravitational systems , 1973 .
[12] Aurel Wintner,et al. The Analytical Foundations of Celestial Mechanics , 2014 .
[13] Singularities of Newtonian Gravitational Systems , 1973 .
[14] Richard McGehee,et al. Triple collision in the collinear three-body problem , 1974 .
[15] H. Sperling. On the real singularities of the N-body problem. , 1969 .