Zero-Index Terahertz Quantum-Cascade Metamaterial Lasers

We propose a new one-dimensional composite right/left-handed (CRLH) transmission line active metamaterial based upon a sub-wavelength metal waveguide loaded with quantum-cascade material that provides terahertz gain via stimulated emission. Finite element simulations were performed to design and characterize a one-dimensional CRLH metamaterial supporting ¿backward¿ waves in the range of 1-2 THz. The addition of capacitive gaps in the top metal and inductive virtual current paths from top contact to the ground plane of a metal-metal quantum-cascade waveguide introduces propagating negative index and zero-index modes. We evaluate the feasibility of a zero-index terahertz quantum-cascade laser, based on a CRLH resonator, which exhibits a uniform spatial mode that is immune to spatial hole burning. An alternate balanced design for traveling-wave applications is also discussed.

[1]  Qing Hu,et al.  186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design , 2009 .

[2]  David A. Ritchie,et al.  THz and sub‐THz quantum cascade lasers , 2009 .

[3]  J. Lü,et al.  Monte Carlo simulation of extraction barrier width effects on terahertz quantum cascade lasers , 2008 .

[4]  Scott W. Corzine,et al.  Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning , 2008 .

[5]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[6]  S. Kumar,et al.  Resonant-Phonon Terahertz Quantum-Cascade Lasers and Video-Rate Terahertz Imaging , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  C. Sirtori,et al.  Longitudinal spatial hole burning in terahertz quantum cascade lasers , 2007 .

[8]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[9]  N. Jokerst,et al.  Tuned permeability in terahertz split-ring resonators for devices and sensors , 2007 .

[10]  C. Sirtori,et al.  Phase-resolved measurements of stimulated emission in a laser , 2007, Nature.

[11]  Carlo Sirtori,et al.  Low threshold THz QC lasers with thin core regions , 2007 .

[12]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[13]  V. Shalaev,et al.  Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. , 2006, Optics letters.

[14]  V. Shalaev,et al.  Compensating Losses in Negative-index Metamaterials by Optical Parametric Amplification , 2006 .

[15]  Qing Hu,et al.  Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions , 2006 .

[16]  Nader Engheta,et al.  Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes , 2006, physics/0603052.

[17]  M. Giovannini,et al.  Quantum cascade lasers with large optical waveguides , 2006, IEEE Photonics Technology Letters.

[18]  G. Bastiaans,et al.  Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. , 2006, Optics express.

[19]  Tatsuo Itoh,et al.  Electromagnetic metamaterials : transmission line theory and microwave applications : the engineering approach , 2005 .

[20]  Didier Lippens,et al.  Experimental evidence of backward waves on terahertz left-handed transmission lines , 2005 .

[21]  K. Balmain,et al.  Negative Refraction Metamaterials: Fundamental Principles and Applications , 2005 .

[22]  Qing Hu,et al.  Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. , 2005, Optics express.

[23]  Andrey M. Baryshev,et al.  A novel terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer , 2005 .

[24]  Richard W Ziolkowski,et al.  Propagation in and scattering from a matched metamaterial having a zero index of refraction. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  T. Itoh,et al.  Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line , 2004, IEEE Transactions on Antennas and Propagation.

[26]  Mattias Beck,et al.  Imaging with a Terahertz quantum cascade laser. , 2004, Optics express.

[27]  V. Podolskiy,et al.  Near-sighted superlens. , 2004, Optics letters.

[28]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[29]  Qing Hu,et al.  Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement , 2003 .

[30]  A.A. Oliner,et al.  A planar negative-refractive-index medium without resonant elements , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[31]  John B. Pendry,et al.  Removal of absorption and increase in resolution in a near-field lens via optical gain , 2003 .

[32]  G. Eleftheriades,et al.  Planar negative refractive index media using periodically L-C loaded transmission lines , 2002 .

[33]  T. Itoh,et al.  Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip "LH line" , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[34]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[35]  F. Capasso,et al.  Quantum cascade lasers with double metal-semiconductor waveguide resonators , 2002 .

[36]  Ekaterina Shamonina,et al.  Imaging, compression and Poynting vector streamlines for negative permittivity materials , 2001 .

[37]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[38]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[39]  芝 祥一 Development of terahertz quantum cascade lasers and application to heterodyne receivers for astronomical observations , 2011 .

[40]  Qing Hu,et al.  Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K , 2009 .

[41]  V. Shalaev Optical negative-index metamaterials , 2007 .