On a special type of border-collision bifurcations occurring at infinity

Abstract In piecewise-smooth dynamical systems, the regions of existence of a periodic orbit are typically parameter sub-spaces confined by border-collision bifurcations of this orbit. We demonstrate that additionally to the usual border-collision bifurcations occurring at finite points in the state space there exist also border-collision bifurcations occurring at infinity.

[1]  T. Iwai The Poincaré compactification of the MIC-Kepler problem with positive energies , 2001 .

[2]  Erik Mosekilde,et al.  Equilibrium-torus bifurcation in nonsmooth systems , 2008 .

[3]  Erik Mosekilde,et al.  Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems: Applications to Power Converters, Relay and Pulse-Width Modulated Control Systems, and Human Decision-Making Behavior , 2003 .

[4]  Laura Gardini,et al.  Some Methods for the Global Analysis of Closed Invariant Curves in Two-Dimensional Maps , 2006 .

[5]  Ali H. Nayfeh,et al.  Modeling and simulation methodology for impact microactuators , 2004 .

[6]  Leon O. Chua,et al.  BIFURCATIONS OF ATTRACTING CYCLES FROM TIME-DELAYED CHUA’S CIRCUIT , 1995 .

[7]  Munther A Hassouneh,et al.  Robust dangerous border-collision bifurcations in piecewise smooth systems. , 2004, Physical review letters.

[8]  G. Verghese,et al.  Nonlinear phenomena in power electronics : attractors, bifurcations, chaos, and nonlinear control , 2001 .

[9]  P. Tracqui Organizing centres and symbolic dynamic in the study of mixed-mode oscillations generated by models of biological autocatalytic processes , 1994 .

[10]  Erik Mosekilde,et al.  Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .

[11]  Leon O. Chua,et al.  Cycles of Chaotic Intervals in a Time-delayed Chua's Circuit , 1993, Chua's Circuit.

[12]  M. I. Feigin,et al.  On the structure of C-bifurcation boundaries of piecewise-continuous systems , 1978 .

[13]  Erik Mosekilde,et al.  Multiple-Attractor bifurcations and Quasiperiodicity in Piecewise-Smooth Maps , 2008, Int. J. Bifurc. Chaos.

[14]  Harry Dankowicz,et al.  Unfolding degenerate grazing dynamics in impact actuators , 2006 .

[15]  Laura Gardini,et al.  Center bifurcation for Two-Dimensional Border-Collision Normal Form , 2008, Int. J. Bifurc. Chaos.

[16]  Andy Ruina,et al.  A two degree-of-freedom earthquake model with static/dynamic friction , 1987 .

[17]  Universal grazing bifurcations in impact oscillators. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Harry Dankowicz,et al.  Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators , 2005 .

[19]  Stephen John Hogan,et al.  Local Analysis of C-bifurcations in n-dimensional piecewise smooth dynamical systems , 1999 .

[20]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[21]  James A. Yorke,et al.  BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS , 1995 .

[22]  Tönu Puu,et al.  Business Cycle Dynamics : Models and Tools , 2006 .

[23]  L. Gardini,et al.  Cournot Duopoly with Kinked Demand According to Palander and Wald , 2002 .

[24]  Dynamics of polynomial systems at innity , 2001 .

[25]  L. Knopoff,et al.  Model and theoretical seismicity , 1967 .

[26]  James A. Yorke,et al.  Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .

[27]  Michael A. Zaks,et al.  Universal scenarios of transitions to chaos via homoclinic bifurcations , 1989 .

[28]  Solomon Lefschetz,et al.  Differential Equations: Geometric Theory , 1958 .

[29]  E. Velasco,et al.  Generic properties of polynomial vector fields at infinity , 1969 .

[30]  Mitrajit Dutta,et al.  Multiple attractor bifurcations: A source of unpredictability in piecewise smooth systems , 1999 .

[31]  Laura Gardini,et al.  Degenerate bifurcations and Border Collisions in Piecewise Smooth 1D and 2D Maps , 2010, Int. J. Bifurc. Chaos.

[32]  D. Saari,et al.  Periodic orbits for the planar Newtonian three-body problem coming from the elliptic restricted three-body problems , 1995 .

[33]  Soumitro Banerjee,et al.  Dangerous bifurcation at border collision: when does it occur? , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  A. Andronov,et al.  Qualitative Theory of Second-order Dynamic Systems , 1973 .

[35]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[36]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[37]  A. Susín,et al.  A Generalization of the Poincaré Compactification , 2006 .

[38]  B. Hao,et al.  Elementary Symbolic Dynamics And Chaos In Dissipative Systems , 1989 .

[39]  Grebogi,et al.  Grazing bifurcations in impact oscillators. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Celso Grebogi,et al.  Border collision bifurcations in two-dimensional piecewise smooth maps , 1998, chao-dyn/9808016.

[41]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[42]  Gianni Arioli,et al.  A deformation theorem in the noncompact nonsmooth setting and its applications , 2001 .

[43]  Tönu Puu,et al.  Oligopoly Dynamics : Models and Tools , 2002 .

[44]  J. Craggs Applied Mathematical Sciences , 1973 .

[45]  H. Dankowicz,et al.  On the origin and bifurcations of stick-slip oscillations , 2000 .

[46]  Hiroyuki Fujita,et al.  A micromachined impact microactuator driven by electrostatic force , 2003 .

[47]  Michael Schanz,et al.  Multi-parametric bifurcations in a piecewise–linear discontinuous map , 2006 .