Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids
暂无分享,去创建一个
F. Xavier Trias | Oriol Lehmkuhl | Assensi Oliva | C. D. Pérez-Segarra | R. W. C. P. Verstappen | C. Pérez-Segarra | A. Oliva | O. Lehmkuhl | F. Trias | R. Verstappen | C. Pérez-Segarra
[1] N. N. Yanenko. Application of the Method of Fractional Steps to Boundary Value Problems for Laplace’s and Poisson’s Equations , 1971 .
[2] Bernardus J. Geurts,et al. Interacting errors in large-eddy simulation: a review of recent developments , 2006 .
[3] Robert L. Street,et al. A comparison of staggered and non-staggered grid Navier--Stokes solutions for the 8:1 cavity natural convection flow , 2005 .
[4] Darryl D. Holm,et al. On a Leray–α model of turbulence , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[5] A. Arakawa. Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .
[6] Roel Verstappen. On restraining the production of small scales of motion in a turbulent channel flow , 2008 .
[7] Pierre Sagaut,et al. Comparison of some Lie-symmetry-based integrators , 2011, J. Comput. Phys..
[8] Shashank,et al. A co-located incompressible Navier-Stokes solver with exact mass, momentum and kinetic energy conservation in the inviscid limit , 2010, J. Comput. Phys..
[9] Thomas S. Lund,et al. Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow , 2006, J. Comput. Phys..
[10] Hervé Jeanmart,et al. Exact Expansions for Filtered-Scales Modelling with a Wide Class of LES Filters , 1999 .
[11] P. Moin,et al. Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .
[12] Sílvia Barbeiro,et al. Supraconvergent cell-centered scheme for two dimensional elliptic problems , 2009 .
[13] J. Blair Perot,et al. A discrete calculus analysis of the Keller Box scheme and a generalization of the method to arbitrary meshes , 2007, J. Comput. Phys..
[14] Jean-Luc Guermond,et al. Mathematical Perspectives on Large Eddy Simulation Models for Turbulent Flows , 2004 .
[15] A. Chorin. Numerical Solution of the Navier-Stokes Equations* , 1989 .
[16] Pierre Sagaut,et al. Discrete filters for large eddy simulation , 1999 .
[17] P. Moin,et al. A numerical method for large-eddy simulation in complex geometries , 2004 .
[18] Lars Davidson,et al. A PRESSURE CORRECTION METHOD FOR UNSTRUCTURED MESHES WITH ARBITRARY CONTROL VOLUMES , 1996 .
[19] Maarten van Reeuwijk,et al. Leray-α simulations of wall-bounded turbulent flows , 2009 .
[20] Pramod K. Subbareddy,et al. A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows , 2009, J. Comput. Phys..
[21] Yong Jung Kim. A MATHEMATICAL INTRODUCTION TO FLUID MECHANICS , 2008 .
[22] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[23] Akio Arakawa,et al. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .
[24] Johan Meyers,et al. A computational error-assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model , 2007, J. Comput. Phys..
[25] F. Xavier Trias,et al. A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity , 2013, J. Comput. Phys..
[26] A. Veldman,et al. Symmetry-preserving discretization of turbulent flow , 2003 .
[27] Gabriel Wittum,et al. On the influence of different stabilisation methods for the incompressible Navier-Stokes equations , 2007, J. Comput. Phys..
[28] Robert L. Street,et al. A divergence free fractional-step method for the Navier{Stokes equations on non-staggered grids , 2010 .
[29] Oleg V. Vasilyev. High Order Finite Difference Schemes on Non-uniform Meshes with Good Conservation Properties , 2000 .
[30] Yohei Morinishi,et al. Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows , 2010, J. Comput. Phys..
[31] L. Weinstein,et al. The legacy. , 2004, Journal of gerontological nursing.
[32] A. Veldman,et al. Spectro-Consistent Discretization of Navier-Stokes: a Challenge to RANS and LES , 1998 .
[33] B. Perot. Conservation Properties of Unstructured Staggered Mesh Schemes , 2000 .
[34] F. X. Trias,et al. A Self-Adaptive Strategy for the Time Integration of Navier-Stokes Equations , 2011 .
[35] C. Rhie,et al. Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .
[36] M. Shashkov,et al. Natural discretizations for the divergence, gradient, and curl on logically rectangular grids☆ , 1997 .
[37] Maarten van Reeuwijk,et al. A mimetic mass, momentum and energy conserving discretization for the shallow water equations , 2011 .
[38] Mikhail Shashkov,et al. Solving Diffusion Equations with Rough Coefficients in Rough Grids , 1996 .
[39] M. Shashkov,et al. The Orthogonal Decomposition Theorems for Mimetic Finite Difference Methods , 1999 .
[40] F. X. Trias,et al. On the construction of discrete filters for symmetry-preserving regularization models , 2011 .
[41] J. Blair Perot,et al. Discrete calculus methods for diffusion , 2007, J. Comput. Phys..
[42] Jason E. Hicken,et al. A shift transformation for fully conservative methods: turbulence simulation on complex, unstructured grids , 2005 .
[43] Darryl D. Holm,et al. Regularization modeling for large-eddy simulation , 2002, nlin/0206026.
[44] F. X. Trias,et al. Direct numerical simulations of two- and three-dimensional turbulent natural convection flows in a differentially heated cavity of aspect ratio 4 , 2007, Journal of Fluid Mechanics.
[45] Benjamin Sanderse,et al. Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations , 2013, J. Comput. Phys..
[46] U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov , 1996 .
[47] J. Kan. A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .
[48] J. B. Perot,et al. An analysis of the fractional step method , 1993 .
[49] Arthur Veldman,et al. Symmetry-preserving upwind discretization of convection on non-uniform grids , 2008 .
[50] Lars Davidson,et al. Natural convection boundary layer in a 5:1 cavity , 2007 .
[51] H. B. Keller. A New Difference Scheme for Parabolic Problems , 1971 .
[52] Thomas A. Manteuffel,et al. The numerical solution of second-order boundary value problems on nonuniform meshes , 1986 .
[53] D. Schmidt,et al. Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics , 2002 .
[54] A. Veldman,et al. Playing with nonuniform grids , 1992 .
[55] F. Xavier Trias,et al. Parallel direct Poisson solver for discretisations with one Fourier diagonalisable direction , 2011, J. Comput. Phys..
[56] J. Blair Perot,et al. Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .
[57] Darryl D. Holm,et al. Leray and LANS-α of turbulent mixing , 2006 .
[58] Arthur E. P. Veldman,et al. Mass, momentum and energy conserving (MaMEC) discretizations on general grids for the compressible Euler and shallow water equations , 2012, J. Comput. Phys..